You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
gpligc/src/optimizer.cpp

967 lines
24 KiB

/*
* (c) 2002-2016 Hannes Krueger
* This file is part of the GPLIGC/ogie package
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*
*/
/*
usage:
optimizer
-f firstpoint
-l lastpoint if not given all will be assumed
-w number of wps
-p pl1 pl2 ... pln-1 points for legs (n-1 arguments)
-s random seed
-d datafile (3d.dat from GPLIGC)
-igc igcfile // planned, not yet implemented
-devisor n uses every n-th record only
-refine n do a brute force optimisation for each wp +-n (only for 7 wps)
-m montecarlo guesses (to be done before Metropolis Monte Carlo)
-mmc metropolis mc cycles
-progress n progression method n steps (testing for live-optimisation)
-sima simulated annealing
-sapara simulated annealing parameter a
-saparb simulated annealing parameter b (see temperature function)
-sacycles aimulated annealing cycles for each temp
-c overall cycles (GPLIGC uses many times -c 1 (to get the progress bar) otherwise -c 15 is OK (and default)
-v verbose
-debug lots of output
For a general optimization task:
task with n waypoints (n-1 legs) and defined scoring
max altitude difference between min((-f),w1) and max((-l),wn) of 1000m
use: -f x -l y -w n -p 1 1 . . -delta 1000 -m 5000 -c 15 -v -d 3d.dat
-dmst dmst scoring +15% for fai-triangle, but -w 5 -p 1 1 1 1 have to be given too
altitude checking included
-holc holc scoring -w5 -p 1.5 1.5 1.5 1.5 should be given too
checking for altitude (holc limit is 2500ft AGL for UL-aero-tow (!winch))
-delta m (max alt-difference between start and finish
lowest point between release and start, and highest point between finish and landing)
"olc-rules"
(this check is only done if !HOLC && !DMST)
for olc 2004 give: -delta 1000 -w 7 -p 1 1 1 1 0.8 0.6
for dmst 2004: -dmst -w 5 -p 1 1 1 1
for holc 2004: -holc -w 5 -p 1.5 1.5 1.5 1.5
*/
#include <iostream>
#include <fstream>
#include <cmath>
#include <cstdio>
#include <unistd.h>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <algorithm>
#include "oglexfunc.h"
// srandom and random are POSIX, not available on MinGW
#ifdef __WIN32__
#define srandom srand
#define random rand
#endif
//const std::string rcsid_optimizer_cpp =
// "$Id: optimizer.cpp 3 2014-07-31 09:59:20Z kruegerh $";
using namespace std;
//global variables
vector <float> lat;
vector <float> lon;
vector <int> alt;
vector <float> scoring;
vector <float> cycleresults;
int wps = 0;
int delta_h = 1000;
int low_index = 0;
int high_index = 0;
int mmc_done=0;
int temp_done=0;
int progression = 0;
int progression_high_index = 0;
bool PROGRESSION = false; // progression method, stucks in local minima often...
bool SIMANNEALING = false; // simulated annealing
bool VERBOSE = false;
bool OLC_CLASS = false;
bool OLC_FAI = false;
bool DMST = false;
bool HOLC = false; // OLC-PHG
bool SOLUTION = false;
bool DEBUG = false;
bool SA_CHANGED = false;
int sa_i = 1;
int sa_t = 0;
int sa_nt = 1000;
float sa_temp;
float sa_param_a=15;
float sa_param_b=0.03;
bool SA_LINEAR = false;
bool SA_EXP = true;
int devisor = 1; // uses only every n-th record
int refine = 0; // brute force refinement points +- n
// Working wp vector
vector <int> p;
// overall maximum variables
vector <int> max_task;
float opt_km = 0;
float max_points = 0;
// cycle maximum variables
vector < int >max_task_cycle;
float opt_km_cycle = 0;
float max_points_cycle = 0;
void montecarlo(void);
void metropolismontecarlo(void);
void calc_pts_km(vector < int >_p);
float temperature(int _t);
double binomial(int n, int k);
double factorial(int n);
int main(int argc, char *argv[])
{
if (argc == 1) {
exit(0);
}
int cycles = 15; //overall cycles (default)
int n = -1; // line-index (datafile)
unsigned long int mc_cycles = 5000; // number of monte carlo cycles
unsigned long int met_mc_cycles = 25000;
float x, y, _f; //some tmp-floats
int temp_alt;
unsigned long int seed = 0; //random seed from GPLIGC
char *filename;
// parsing of options...
for (int i = 0; i < argc; i++) {
//cerr << i << " " << argc << " " << argv[i] << "---" << endl;
if (strcmp(argv[i], "-f") == 0)
sscanf(argv[i + 1], "%d", &low_index);
if (strcmp(argv[i], "-l") == 0)
sscanf(argv[i + 1], "%d", &high_index);
if (strcmp(argv[i], "-w") == 0) {
sscanf(argv[i + 1], "%d", &wps);
p.resize(wps);
max_task.resize(wps);
max_task_cycle.resize(wps);
}
if (strcmp(argv[i], "-progression") == 0) {
sscanf(argv[i + 1], "%d", &progression);
PROGRESSION = true;
}
if (strcmp(argv[i], "-sima") == 0) {
SIMANNEALING = true;
}
if (strcmp(argv[i], "-salin") == 0) {
SA_LINEAR = true;
SA_EXP = false;
}
if (strcmp(argv[i], "-saexp") == 0) {
SA_EXP = true;
SA_LINEAR = false;
}
if (strcmp(argv[i], "-d") == 0)
filename = argv[i + 1];
if (strcmp(argv[i], "-m") == 0)
sscanf(argv[i + 1], "%lu", &mc_cycles);
if (strcmp(argv[i], "-mmc") == 0)
sscanf(argv[i + 1], "%lu", &met_mc_cycles);
if (strcmp(argv[i], "-sacycles") == 0)
sscanf(argv[i + 1], "%d", &sa_nt);
if (strcmp(argv[i], "-sapara") == 0)
sscanf(argv[i + 1], "%f", &sa_param_a);
if (strcmp(argv[i], "-saparb") == 0)
sscanf(argv[i + 1], "%f", &sa_param_b);
if (strcmp(argv[i], "-s") == 0)
sscanf(argv[i + 1], "%lu", &seed);
if (strcmp(argv[i], "-c") == 0)
sscanf(argv[i + 1], "%d", &cycles);
if (strcmp(argv[i], "-devisor") == 0)
sscanf(argv[i + 1], "%d", &devisor);
if (strcmp(argv[i], "-refine") == 0)
sscanf(argv[i + 1], "%d", &refine);
if (strcmp(argv[i], "-delta") == 0)
sscanf(argv[i + 1], "%d", &delta_h);
if (strcmp(argv[i], "-p") == 0) {
for (int j = 1; j < wps; j++) {
sscanf(argv[i + j], "%f", &_f);
//cerr << _f << endl;
scoring.push_back(_f);
}
}
if (strcmp(argv[i], "-v") == 0)
VERBOSE = true;
if (strcmp(argv[i], "-debug") == 0) {
DEBUG = true;
VERBOSE = true;
}
if (strcmp(argv[i], "-dmst") == 0) {
DMST = true;
delta_h = 1000; //check is hard-coded
}
if (strcmp(argv[i], "-olc-class") == 0) {
OLC_CLASS = true;
delta_h = 1000; //check is hard-coded
}
if (strcmp(argv[i], "-olc-fai") == 0) {
OLC_FAI = true;
delta_h = 1000; //check is hard-coded
}
if (strcmp(argv[i], "-holc") == 0)
HOLC = true;
}
if (PROGRESSION) {
// cycles = 1;
progression_high_index = low_index+progression;
}
/* if (SIMANNEALING) {
//cycles = 1;
mc_cycles = 1;
}
*/
if (VERBOSE) {
cerr << "Optimizer by Hannes Krueger (c) 2002-2016 " << endl; // << rcsid_optimizer_cpp << endl;
cerr << "Optimize \"" << filename << "\"" << endl
<< "between " << low_index << " and " << high_index <<
endl << wps << " Waypoints" << endl;
for (int i = 0; i < wps - 1; i++)
cerr << "Leg " << i +
1 << " = " << scoring[i] << " Points/km" <<
endl;
cerr << mc_cycles << " Initial MC Random guesses"
<< endl << "Random seed given: " << seed << endl <<
"Overall cycles: " << cycles << endl;
if (OLC_CLASS)
cerr << "Optimize for OLC-classic (rules oct/2007)" << endl;
if (OLC_FAI)
cerr << "Optimize for OLC-Fai (rules oct/2007)" << endl;
if (DMST)
cerr << "Optimize for DMSt (rules 2004)" << endl;
if (HOLC)
cerr << "Optimize for HOLC 2004 rules" << endl;
//if (!DMST && !HOLC)
// cerr << "Max Alt difference is " << delta_h << " m" <<
// endl;
if (PROGRESSION) {
cerr << "Progression method: steps: "<< progression << endl;
}
if (SIMANNEALING){
cerr << "Simulated annealing will be performed. Cylces: " <<sa_nt <<endl;
if (SA_EXP)
cerr << "Temp function: T(x) = " << sa_param_a<<"*exp(-"<<sa_param_b<<"*x)"<<endl;
if (SA_LINEAR)
cerr << "Temp function: T(x) = -" << sa_param_a<<"*x + "<<sa_param_b<<endl;
}
if (refine > 0) {
cerr << "Brute Force refinement will be performed +- " << refine << endl;
}
if (devisor > 1) {
cerr << "Devisor: " << devisor << " Data subsampling" << endl;
}
}
// open the datafile and read in
ifstream cfile(filename);
if (!cfile) {
cerr << "Can not open datafile " << filename << endl;
return -1;
}
char zeile[80];
while (cfile) {
cfile.getline(zeile, 80, '\n');
//cerr << "Zeile: " << zeile << endl;
n++;
if (sscanf(zeile, "%f %f %d", &x, &y, &temp_alt) != 3) {
//cerr << "empty line in km.dat (why?)" << endl;
n--;
} else {
lat.push_back(y);
lon.push_back(x);
alt.push_back(temp_alt);
//cerr << temp_alt << endl;
}
}
if (high_index==0) {high_index=lat.size()-1;}
if (VERBOSE)
cerr << high_index-low_index << " Records. " << wps << " Waypoints. Gives Binomial("<<high_index-low_index<<","<<wps<<") possibilities." << endl;
if (VERBOSE && devisor > 1)
cerr << (float)(high_index-low_index)/(float)devisor << " Records/devisor " << wps << " Waypoints. Gives Binomial("<<(float)(high_index-low_index)/(float)devisor<<","<<wps<<") possibilities." << endl;
// initialize random by jmw krueger modified by kruegerh
// Seed RNG *******************************************
//int seed = 0;
FILE *devrand;
devrand = fopen("/dev/urandom", "r");
// if no dev urandom available use seed from cmdl
if (devrand) {
fread(&seed, sizeof(int), 1, devrand);
fclose(devrand);
} else {
// if no seed from commandline available... exit
if (seed == 0) {
cerr << "No random seed available..." << endl;
return -1;
}
}
//cerr << "used seed to initialize random number generator: " << seed << endl;
srandom(seed);
// ****************************************************
// too high release point warning! (applies in case of UL-tow)
if (HOLC && VERBOSE) {
//VALID = true;
if (alt[low_index] - alt[0] > 762.195) { // 2500ft
cerr << "WARNING: Altitude difference between take-off location and release point: " <<
alt[low_index]-alt[0] << "m. This violates 4.5 in DHV Online contest Rules for 2004 (Rel. 1.5)" <<
" in the case you were towed by an UL. According to 4.5 winch launching seems to be OK." << endl;
}
}
//starting optimization cycles:
for (int u = 1; u <= cycles; u++) {
if (DEBUG)
cerr << "Cycle: " << u << endl;
max_points_cycle = 0;
if (PROGRESSION)
progression_high_index = low_index+progression;
progress_point:
if (PROGRESSION && VERBOSE) cerr << "Progression: " << low_index << " <===> " << progression_high_index << " " << '\r' << flush;
// initial model (random guesses or equidistant (index) distribution)
if (mc_cycles != 0) {
// loop for random guesses
for (unsigned long int i = 0; i <= mc_cycles; i++) {
//if (DEBUG)
// cerr << "Monte Carlo random guess: " << i << " " << '\r' << flush;
montecarlo();
}
} else { //start with uniform distribution
if (PROGRESSION) {exit(0);}
if (DEBUG)
cerr << "No Monte Carlo guesses. Starting with \"uniform distribution\"" << endl;
int intervall =
(high_index - low_index) / (wps + 1);
//cerr << low_index << " <---> " << high_index << endl;
for (int z = 0; z < wps; z++) {
max_task_cycle[z] =
low_index + (z + 1) * intervall;
}
}
if (!SIMANNEALING) {
// Metropolis MC cycles
unsigned long int zaehler = 0;
while (zaehler < met_mc_cycles) {
zaehler++;
//if (DEBUG)
// cerr << "Metropolis Monte Carlo: " << zaehler << " " << '\r' << flush;
metropolismontecarlo();
}
} else {
// SIMULATED ANNEALING
sa_t=0;
sa_temp=temperature(sa_t);
while (sa_temp >= 0.0001) {
SA_CHANGED = false;
if (sa_i < sa_nt) {
metropolismontecarlo();
if (!SA_CHANGED)
sa_i++;
} else {
sa_i = 1;
sa_t++;
sa_temp=temperature(sa_t);
temp_done++;
if (VERBOSE)
cerr << "Temp: " << sa_temp << " Pts: " << max_points_cycle << " KM: " << opt_km_cycle << " "<<'\r' << flush;
}
}
}
//if (DEBUG) cerr << endl;
if (PROGRESSION) {
progression_high_index += progression;
if (progression_high_index <= high_index) {goto progress_point;}
}
// brute force refinement +- n
vector <int> _p = max_task_cycle; // this one stays constant (for the loops)
vector <int> _pp = max_task_cycle;// this one contains the actual try
// so far this only works for wps == 7
if (refine > 0) {
unsigned long int bfrefc =0;
if (DEBUG) cerr << "Refine started..." <<endl;
if (max_task_cycle.size() == 7) {
for (int p0=_p[0]-refine; p0<=_p[0]+refine; p0++) {
_pp[0] = p0;
for (int p1=_p[1]-refine; p1<=_p[1]+refine; p1++) {
_pp[1] = p1;
for (int p2=_p[2]-refine; p2<=_p[2]+refine; p2++) {
_pp[2] = p2;
for (int p3=_p[3]-refine; p3<=_p[3]+refine; p3++) {
_pp[3] = p3;
for (int p4=_p[4]-refine; p4<=_p[4]+refine; p4++) {
_pp[4] = p4;
for (int p5=_p[5]-refine; p5<=_p[5]+refine; p5++) {
_pp[5] = p5;
for (int p6=_p[6]-refine; p6<=_p[6]+refine; p6++) {
_pp[6] = p6;
bfrefc++;
calc_pts_km(_pp);
//for (int s = 0; s < (int) _pp.size(); s++) {
//cerr << " " << _pp[s];
//} cerr << endl;
}}}}}}}}
if (max_task_cycle.size() == 5) {
for (int p0=_p[0]-refine; p0<=_p[0]+refine; p0++) {
_pp[0] = p0;
for (int p1=_p[1]-refine; p1<=_p[1]+refine; p1++) {
_pp[1] = p1;
for (int p2=_p[2]-refine; p2<=_p[2]+refine; p2++) {
_pp[2] = p2;
for (int p3=_p[3]-refine; p3<=_p[3]+refine; p3++) {
_pp[3] = p3;
for (int p4=_p[4]-refine; p4<=_p[4]+refine; p4++) {
_pp[4] = p4;
bfrefc++;
calc_pts_km(_pp);
//for (int s = 0; s < (int) _pp.size(); s++) {
//cerr << " " << _pp[s];
//} cerr << endl;
}}}}}}
if (DEBUG)
cerr << "Refinement cycles: " << bfrefc << endl;
}
if (max_points_cycle > max_points) {
max_points = max_points_cycle;
opt_km = opt_km_cycle;
max_task = max_task_cycle;
}
if (VERBOSE) {
//cerr << u << " cycle: km" << opt_km_cycle << " pts: " << max_points_cycle << endl;
//cerr << "Cycle " << u << " results: km: " << opt_km << " pts: "
// << max_points << endl;
cerr << "Cycle " << u << " results: pts: " << max_points_cycle << " km: "
<< opt_km_cycle << " (best: "<< max_points<<"pts / "<<opt_km<<"km)"<<endl;
}
cycleresults.push_back(max_points_cycle);
}
if (!SOLUTION && VERBOSE)
cerr << "No solution! - ??? why? -delta too negative?" <<
endl;
// this is the real result, to be get by GPLIGC (the only output to stdout (without -v))
cout << wps << " " << opt_km << " " << max_points;
for (int s = 0; s < (int) max_task.size(); s++) {
cout << " " << max_task[s];
}
cout << endl;
// gives an estimate how often the best solution comes out (% of cycles)
if (VERBOSE) {
int numbest=0;
//int cycles=1;
for (int a=0;a<=(int)cycleresults.size()-1;a++) {
//cycles++;
if (cycleresults[a] > max_points-0.001) {numbest++;}
}
float per = ((float)numbest/(float)cycleresults.size())*100.0;
cerr << "cyc: " << cycleresults.size() << " best: " << numbest << " percent: " << per << endl;
cerr << "Average mmc/cycle: " << (float) mmc_done / (float) cycles << " Steps in cooling: " << (float) temp_done / (float) cycles << endl;
cerr << "above per Trackpoint: " << ((float) mmc_done / (float) cycles) / ((float) (high_index-low_index)/(float)devisor) << endl;
cerr << "above per %: " << (((float) mmc_done / (float)cycles) / ((float) (high_index-low_index)/(float)devisor))/per << endl;
}
return 1;
}
// random number between zero and max (by jan mw krueger)
inline int random_number(double max)
{
return (int) ((max + 1) * random() / (RAND_MAX + 1.0));
}
void montecarlo(void)
{
// get the guesses for each wp
int hi;
if (PROGRESSION) {hi = progression_high_index;}
else {hi = high_index;}
for (int m = 0; m < wps; m++) {
p[m] = (
(int) (random_number((hi - low_index +1) / devisor)) * devisor) + low_index;
//cerr << "ZZZ: " << p[m] << " ";
}
sort(p.begin(), p.end());
calc_pts_km(p);
}
// ######################### MMC
void metropolismontecarlo(void)
{
int but, top, q, indexregister;
//random number (take one wp to change)
q = (int) random_number((wps - 2) - 0 + 1) + 0;
if (q == 0) {
but = low_index;
} else {
but = max_task_cycle[q - 1];
} //+1;}
if (q == wps - 1) {
top = high_index;
if (PROGRESSION) {top=progression_high_index;}
} else {
top = max_task_cycle[q + 1];
} //-1;}
//guess new wp between last and next of choosen
indexregister = ((int) (random_number((top - but)/devisor)) *devisor) + but;
p = max_task_cycle;
p[q] = indexregister;
calc_pts_km(p);
mmc_done++;
}
// calculate points and km for given indices
void calc_pts_km(vector < int >_p)
{
//sort given indices
//sort(_p.begin(), _p.end()); // PERFORMANCE ... not needed for metropolis and sim anneal
//set km and points to 0
float km = 0;
float pts = 0;
// temporary km in calc-cycle
float cyckm = 0;
// this should bes visible in the whole calc_pts_km function (for some debug-related output)
bool FAI = false;
bool TRI = false; // only for debugging output
// The "legs" vector is filles with the lengths of each leg
vector < float >legs;
// calculate distance
// General case (doesnt need to be calc for olc-fai
//if (!OLC_FAI) { ALWAYS NEEDED
for (int n = 0; n < (int) _p.size() - 1; n++) {
cyckm =
great_circle_dist(lat[_p[n]], lon[_p[n]],
lat[_p[n + 1]],
lon[_p[n + 1]]);
legs.push_back(cyckm);
km = km + cyckm;
pts = pts + cyckm * scoring[n];
}
//}
// DMST rules and HOLC rules OLC_FAI
// check for triangular task an fai-tri
if (DMST || HOLC || OLC_FAI) {
//these will be the distance of the triangular task
float km3;
// in the case of holc we need to calculate this first, because the start-end limit is 20% of km3
// triangle wp 123
if (HOLC)
km3 = legs[1] + legs[2] +
great_circle_dist(lat[_p[1]], lon[_p[1]],
lat[_p[3]], lon[_p[3]]);
// if track is closed - end point within a radius of 1km of start point (DMST and olc-fai)
// triangular
// for holc this is 20% of triangular task
float limit = 1.0;
if (HOLC) limit = 0.2 * km3;
// check the triangular task, if it is one start-end <= limit!
if (great_circle_dist (lat[_p[0]], lon[_p[0]], lat[_p[4]], lon[_p[4]]) <= limit) {
// distance from wp2-wp3-wp4-wp2 (wp1 is start, wp5 is finish)
// calc only for dmst here, for holc we have done this before (saves some time)
if (DMST || OLC_FAI)
km3 = legs[1] + legs[2] +
great_circle_dist(lat[_p[1]], lon[_p[1]],
lat[_p[3]], lon[_p[3]]);
// lengths of legs of triangular task
vector < float >legs3;
legs3.push_back(legs[1]);
legs3.push_back(legs[2]);
legs3.push_back(great_circle_dist
(lat[_p[1]], lon[_p[1]], lat[_p[3]],
lon[_p[3]]));
// sort them for FAI task checking
sort(legs3.begin(), legs3.end());
// check for FAI task
FAI = false;
if (km3 < 500) {
// leg3[0] is the shortest leg
if ((legs3[0] / km3) >= 0.28)
FAI = true;
}
if (km3 >= 500) {
if ((legs3[0] / km3) >= 0.25
&& (legs[2] / km3) <= 0.45)
FAI = true;
}
// add 15% if its an FAI task (DMSt WO 4.2)
// calc points seperate, to compare with "plain task" later
float fai_pts;
float tri_pts;
//float tri_km;
// OLC_FAI 3 legs, 1pt/km <== scheint so zu sein!
if (OLC_FAI && FAI) {
pts = km3;
km = km3;
}
// FAI adds 15% for DMST, and check if the FAI-task will have more points
if (DMST && FAI) {
fai_pts = km3 * 1.15;
if (fai_pts > pts) {
pts = fai_pts;
km = km3;
}
}
// FAI task will have km3 * 2 pts!
if (HOLC && FAI) {
fai_pts = (km3
- great_circle_dist(lat[_p[0]], lon[_p[0]], lat[_p[4]],lon[_p[4]]) ) * 2.0;
if (fai_pts > pts) {
pts = fai_pts;
km = km3- great_circle_dist(lat[_p[0]], lon[_p[0]], lat[_p[4]],lon[_p[4]]);
}
}
// triangluar task will have km3 * 1.75 pts!
if (HOLC && !FAI) {
tri_pts = (km3 - great_circle_dist(lat[_p[0]], lon[_p[0]], lat[_p[4]],lon[_p[4]])) *1.75;
if (tri_pts > pts) {
pts = tri_pts;
km = km3- great_circle_dist(lat[_p[0]], lon[_p[0]], lat[_p[4]],lon[_p[4]]);
TRI = true;
}
}
}
}
// ######## CHECKING THE TASK
// now points and km are calculated
// now we need to check if the task is valid or not (alt difference, etc)
// save better task, check altitude difference...
//altitude diff for olc differs from alt diff for dmst (is like FAI sporting code III (1999,AL4, 1.2.8 and 1.4.7)
if (pts > max_points_cycle || SIMANNEALING) {
// valid-task-flag.
bool VALID = false;
int start_alt = 100000;
int finish_alt = -100000;
// this is the olc-style altitude difference checking!
if (OLC_CLASS || OLC_FAI) {
// get lowest point between release and first wp (start)
for (int n = low_index; n <= _p[0]; n++) {
if (alt[n] < start_alt)
start_alt = alt[n];
}
// get highest point between finish (last wp) and landing (or engine start etc)
for (int n = _p[_p.size() - 1]; n <= high_index; n++) {
if (alt[n] > finish_alt)
finish_alt = alt[n];
}
// avoid task with too big altitude difference
if (start_alt - finish_alt < delta_h)
VALID = true;
}
if (OLC_FAI && !FAI)
VALID=false;
if (DMST) {
// dmst alt diff like FAI Sporting Code III
// 1999, AL4, 1.2.8 1.4.7
start_alt = alt[_p[0]];
finish_alt = alt[_p.size()-1];
int release_alt = alt[low_index];
int diff1 = start_alt - finish_alt;
int diff2 = release_alt - finish_alt;
if (diff1 < 1000 || diff2 < 1000)
VALID=true;
}
if (HOLC)
VALID = true;
// check for minimum distance between WP's (DMSt WO 4.1)
// nur zwischen WPs, also nicht start und endpunkt???
// this seems to be removed from 4.1 in 2004 ?
// check this out too!
if (DMST) {
if (great_circle_dist
(lat[_p[1]], lon[_p[1]], lat[_p[2]],
lon[_p[2]]) < 10.0
|| great_circle_dist(lat[_p[2]], lon[_p[2]],
lat[_p[3]],
lon[_p[3]]) < 10.0
|| great_circle_dist(lat[_p[3]], lon[_p[3]],
lat[_p[1]],
lon[_p[1]]) < 10.0)
VALID = false;
}
// save better and valid task
if (VALID && !SIMANNEALING) {
// save better task...
max_task_cycle = _p;
opt_km_cycle = km;
max_points_cycle = pts;
SOLUTION = true;
}
if (VALID && SIMANNEALING) {
if (pts > max_points_cycle) {
max_task_cycle = _p;
opt_km_cycle = km;
max_points_cycle = pts;
SOLUTION = true;
SA_CHANGED=true;
//cerr << "pts: " << pts << endl;
} else {
float prob = exp(- (max_points_cycle-pts)/sa_temp);
//cerr << "diff: " << max_points_cycle-pts << endl;
float randno = (float) random() / (float) RAND_MAX;
//cerr << "prob = " << prob << " rand = " << randno << endl;
if (randno < prob && !(prob==1.0)) {
max_task_cycle = _p;
opt_km_cycle = km;
max_points_cycle = pts;
SOLUTION = true;
SA_CHANGED=true;
//cerr << "pts: " << pts << " !!" << endl;
}
}
}
if (DEBUG && !VALID)
cerr << endl << "Invalid Task omitted!" << endl;
if (DEBUG && VALID && !SIMANNEALING) {
cerr << "Task improved: " << km << " " << pts << " " << endl;
if (DMST && FAI) cerr << "DMST and FAI! 15% bonus applied!"<<endl;
if (HOLC && FAI) cerr << "HOLC and FAI! 2pts/km!" << endl;
if (HOLC && TRI) cerr << "HOLC triangular! 1.75pts/km!" << endl;;
// cerr << endl;
}
}
}
// temperature function for sim anneal
float temperature (int _t) {
//simple linear temp function
if (SA_LINEAR)
return (-sa_param_a * (float) _t + sa_param_b);
if (SA_EXP)
return (sa_param_a*exp(-sa_param_b*(float)_t));
return 0;
}
// not usefull. range of double is 1.7E +/- 308 (too small)
double factorial(int n) {
double fac=1;
for (int x=n;x>1;x--) {
fac*=x;
//cerr << fac << " ";
}
return fac;
}
double binomial(int n, int k) {
return factorial(n)/(factorial(k)*factorial(n-k));
}