Gutenprint + CUPS backends for Dye Sublimation printers
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
selphy_print/backend_sinfonia.c

1087 lines
26 KiB

/*
* Shinko/Sinfonia Common Code
*
* (c) 2019 Solomon Peachy <pizza@shaftnet.org>
*
* The latest version of this program can be found at:
*
* http://git.shaftnet.org/cgit/selphy_print.git
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* [http://www.gnu.org/licenses/gpl-3.0.html]
*
* SPDX-License-Identifier: GPL-3.0+
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
#include "backend_common.h"
#include "backend_sinfonia.h"
int sinfonia_read_parse(int data_fd, uint32_t model,
struct sinfonia_printjob *job)
{
uint32_t hdr[29];
int ret, i;
uint8_t tmpbuf[4];
/* Read in header */
ret = read(data_fd, hdr, SINFONIA_HDR_LEN);
if (ret < 0 || ret != SINFONIA_HDR_LEN) {
if (ret == 0)
return CUPS_BACKEND_CANCEL;
ERROR("Read failed (%d/%d)\n",
ret, SINFONIA_HDR_LEN);
perror("ERROR: Read failed");
return ret;
}
/* Byteswap everything */
for (i = 0 ; i < (SINFONIA_HDR_LEN / 4) ; i++) {
hdr[i] = le32_to_cpu(hdr[i]);
}
/* Sanity-check headers */
if (hdr[0] != SINFONIA_HDR1_LEN ||
hdr[4] != SINFONIA_HDR2_LEN ||
hdr[22] != SINFONIA_DPI) {
ERROR("Unrecognized header data format!\n");
return CUPS_BACKEND_CANCEL;
}
if (hdr[1] != model) {
ERROR("job/printer mismatch (%u/%u)!\n", hdr[1], model);
return CUPS_BACKEND_CANCEL;
}
if (!hdr[13] || !hdr[14]) {
ERROR("Bad job cols/rows!\n");
return CUPS_BACKEND_CANCEL;
}
/* Work out data length */
job->datalen = hdr[13] * hdr[14] * 3;
job->databuf = malloc(job->datalen);
if (!job->databuf) {
ERROR("Memory allocation failure!\n");
return CUPS_BACKEND_RETRY_CURRENT;
}
/* Read in payload data */
{
uint32_t remain = job->datalen;
uint8_t *ptr = job->databuf;
do {
ret = read(data_fd, ptr, remain);
if (ret < 0) {
ERROR("Read failed (%d/%u/%d)\n",
ret, remain, job->datalen);
perror("ERROR: Read failed");
free(job->databuf);
job->databuf = NULL;
return ret;
}
ptr += ret;
remain -= ret;
} while (remain);
}
/* Make sure footer is sane too */
ret = read(data_fd, tmpbuf, 4);
if (ret != 4) {
ERROR("Read failed (%d/%d)\n", ret, 4);
perror("ERROR: Read failed");
free(job->databuf);
job->databuf = NULL;
return ret;
}
if (tmpbuf[0] != 0x04 ||
tmpbuf[1] != 0x03 ||
tmpbuf[2] != 0x02 ||
tmpbuf[3] != 0x01) {
ERROR("Unrecognized footer data format!\n");
free (job->databuf);
job->databuf = NULL;
return CUPS_BACKEND_CANCEL;
}
/* Fill out job params */
job->jp.media = hdr[6];
if (hdr[1] != 6245)
job->jp.method = hdr[8];
if (hdr[1] == 2245 || hdr[1] == 6245)
job->jp.quality = hdr[9];
if (hdr[1] == 1245 || hdr[1] == 2145)
job->jp.oc_mode = hdr[9];
else
job->jp.oc_mode = hdr[10];
if (hdr[1] == 1245)
job->jp.mattedepth = hdr[11];
if (hdr[1] == 1245)
job->jp.dust = hdr[12];
job->jp.columns = hdr[13];
job->jp.rows = hdr[14];
job->jp.copies = hdr[15];
if (hdr[1] == 2245 || hdr[1] == 6145)
job->jp.ext_flags = hdr[28];
return CUPS_BACKEND_OK;
}
int sinfonia_raw10_read_parse(int data_fd, struct sinfonia_printjob *job)
{
struct sinfonia_printcmd10_hdr hdr;
int ret;
/* Read in header */
ret = read(data_fd, &hdr, sizeof(hdr));
if (ret < 0 || ret != sizeof(hdr)) {
if (ret == 0)
return CUPS_BACKEND_CANCEL;
ERROR("Read failed (%d/%d/%d)\n",
ret, 0, (int)sizeof(hdr));
perror("ERROR: Read failed");
return CUPS_BACKEND_CANCEL;
}
/* Validate header */
if (le16_to_cpu(hdr.hdr.cmd) != 0x4001 ||
le16_to_cpu(hdr.hdr.len) != 10) {
ERROR("Unrecognized data format!\n");
return CUPS_BACKEND_CANCEL;
}
job->jp.copies = le16_to_cpu(hdr.copies);
job->jp.rows = le16_to_cpu(hdr.rows);
job->jp.columns = le16_to_cpu(hdr.columns);
job->jp.media = hdr.media;
job->jp.oc_mode = hdr.oc_mode;
job->jp.method = hdr.method;
/* Allocate buffer */
job->datalen = job->jp.rows * job->jp.columns * 3;
job->databuf = malloc(job->datalen);
if (!job->databuf) {
ERROR("Memory allocation failure!\n");
return CUPS_BACKEND_RETRY_CURRENT;
}
{
int remain = job->datalen;
uint8_t *ptr = job->databuf;
do {
ret = read(data_fd, ptr, remain);
if (ret < 0) {
ERROR("Read failed (%d/%d/%d)\n",
ret, remain, job->datalen);
perror("ERROR: Read failed");
return CUPS_BACKEND_CANCEL;
}
ptr += ret;
remain -= ret;
} while (remain);
}
return CUPS_BACKEND_OK;
}
int sinfonia_raw18_read_parse(int data_fd, struct sinfonia_printjob *job)
{
struct sinfonia_printcmd18_hdr hdr;
int ret;
/* Read in header */
ret = read(data_fd, &hdr, sizeof(hdr));
if (ret < 0 || ret != sizeof(hdr)) {
if (ret == 0)
return CUPS_BACKEND_CANCEL;
ERROR("Read failed (%d/%d/%d)\n",
ret, 0, (int)sizeof(hdr));
perror("ERROR: Read failed");
return CUPS_BACKEND_CANCEL;
}
/* Validate header */
if (le16_to_cpu(hdr.hdr.cmd) != SINFONIA_CMD_PRINTJOB ||
le16_to_cpu(hdr.hdr.len) != 18) {
ERROR("Unrecognized data format!\n");
return CUPS_BACKEND_CANCEL;
}
job->jp.copies = le16_to_cpu(hdr.copies);
job->jp.rows = le16_to_cpu(hdr.rows);
job->jp.columns = le16_to_cpu(hdr.columns);
job->jp.media = hdr.media;
job->jp.oc_mode = hdr.oc_mode;
job->jp.method = hdr.method;
/* Allocate buffer */
job->datalen = job->jp.rows * job->jp.columns * 3;
job->databuf = malloc(job->datalen);
if (!job->databuf) {
ERROR("Memory allocation failure!\n");
return CUPS_BACKEND_RETRY_CURRENT;
}
{
int remain = job->datalen;
uint8_t *ptr = job->databuf;
do {
ret = read(data_fd, ptr, remain);
if (ret < 0) {
ERROR("Read failed (%d/%d/%d)\n",
ret, remain, job->datalen);
perror("ERROR: Read failed");
return CUPS_BACKEND_CANCEL;
}
ptr += ret;
remain -= ret;
} while (remain);
}
return CUPS_BACKEND_OK;
}
void sinfonia_cleanup_job(const void *vjob)
{
const struct sinfonia_printjob *job = vjob;
if (job->databuf)
free(job->databuf);
free((void*)job);
}
int sinfonia_docmd(struct sinfonia_usbdev *usbh,
uint8_t *cmd, int cmdlen,
uint8_t *resp, int resplen,
int *num)
{
libusb_device_handle *dev = usbh->dev;
uint8_t endp_up = usbh->endp_up;
uint8_t endp_down = usbh->endp_down;
int ret;
struct sinfonia_cmd_hdr *cmdhdr = (struct sinfonia_cmd_hdr *) cmd;
struct sinfonia_status_hdr *resphdr = (struct sinfonia_status_hdr *)resp;
if ((ret = send_data(dev, endp_down,
cmd, cmdlen))) {
goto fail;
}
ret = read_data(dev, endp_up,
(uint8_t *)resp, resplen, num);
if (ret < 0)
goto fail;
if (resphdr->result != RESULT_SUCCESS) {
INFO("Printer Status: %02x (%s)\n", resphdr->status,
sinfonia_status_str(resphdr->status));
INFO(" Result: 0x%02x Error: 0x%02x (0x%02x/0x%02x = %s)\n",
resphdr->result, resphdr->error, resphdr->printer_major,
resphdr->printer_minor, usbh->error_codes(resphdr->printer_major, resphdr->printer_minor));
goto fail;
}
return 0;
fail:
ERROR("Failed to execute %s command\n", sinfonia_cmd_names(cmdhdr->cmd));
return ret;
}
int sinfonia_flashled(struct sinfonia_usbdev *usbh)
{
struct sinfonia_cmd_hdr cmd;
struct sinfonia_status_hdr resp;
int ret, num = 0;
cmd.cmd = cpu_to_le16(SINFONIA_CMD_FLASHLED);
cmd.len = cpu_to_le16(0);
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
return ret;
}
return 0;
}
int sinfonia_canceljob(struct sinfonia_usbdev *usbh, int id)
{
struct sinfonia_cancel_cmd cmd;
struct sinfonia_status_hdr resp;
int ret, num = 0;
cmd.id = id;
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_CANCELJOB);
cmd.hdr.len = cpu_to_le16(1);
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
return ret;
}
return 0;
}
int sinfonia_getparam(struct sinfonia_usbdev *usbh, int target, uint32_t *param)
{
struct sinfonia_getparam_cmd cmd;
struct sinfonia_getparam_resp resp;
int ret, num = 0;
/* Set up command */
cmd.target = target;
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_GETPARAM);
cmd.hdr.len = cpu_to_le16(sizeof(struct sinfonia_getparam_cmd)-sizeof(cmd.hdr));
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
}
*param = le32_to_cpu(resp.param);
return ret;
}
int sinfonia_setparam(struct sinfonia_usbdev *usbh, int target, uint32_t param)
{
struct sinfonia_setparam_cmd cmd;
struct sinfonia_status_hdr resp;
int ret, num = 0;
/* Set up command */
cmd.target = target;
cmd.param = cpu_to_le32(param);
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_SETPARAM);
cmd.hdr.len = cpu_to_le16(sizeof(struct sinfonia_setparam_cmd)-sizeof(cmd.hdr));
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
}
return ret;
}
int sinfonia_getfwinfo(struct sinfonia_usbdev *usbh)
{
struct sinfonia_fwinfo_cmd cmd;
struct sinfonia_fwinfo_resp resp;
int num = 0;
int i;
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_FWINFO);
cmd.hdr.len = cpu_to_le16(1);
resp.hdr.payload_len = 0;
INFO("FW Information:\n");
for (i = FWINFO_TARGET_MAIN_BOOT ; i <= FWINFO_TARGET_PRINT_TABLES ; i++) {
int ret;
cmd.target = i;
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
continue;
}
if (le16_to_cpu(resp.hdr.payload_len) != (sizeof(struct sinfonia_fwinfo_resp) - sizeof(struct sinfonia_status_hdr)))
continue;
INFO(" %s\t ver %02x.%02x\n", sinfonia_fwinfo_targets(i),
resp.major, resp.minor);
#if 0
INFO(" name: '%s'\n", resp.name);
INFO(" type: '%s'\n", resp.type);
INFO(" date: '%s'\n", resp.date);
INFO(" version: %02x.%02x (CRC %04x)\n", resp.major, resp.minor,
le16_to_cpu(resp.checksum));
#endif
}
return 0;
}
int sinfonia_geterrorlog(struct sinfonia_usbdev *usbh)
{
struct sinfonia_cmd_hdr cmd;
struct sinfonia_errorlog_resp resp;
int ret, num = 0;
int i;
cmd.cmd = cpu_to_le16(SINFONIA_CMD_ERRORLOG);
cmd.len = cpu_to_le16(0);
resp.hdr.payload_len = 0;
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
return ret;
}
if (le16_to_cpu(resp.hdr.payload_len) != (sizeof(struct sinfonia_errorlog_resp) - sizeof(struct sinfonia_status_hdr)))
return -2;
INFO("Stored Error Events: %u entries:\n", resp.count);
for (i = 0 ; i < resp.count ; i++) {
INFO(" %02d: @ %08u prints : 0x%02x/0x%02x (%s)\n", i,
le32_to_cpu(resp.items[i].print_counter),
resp.items[i].major, resp.items[i].minor,
usbh->error_codes(resp.items[i].major, resp.items[i].minor));
}
return 0;
}
int sinfonia_resetcurve(struct sinfonia_usbdev *usbh, int target, int id)
{
struct sinfonia_reset_cmd cmd;
struct sinfonia_status_hdr resp;
int ret, num = 0;
cmd.target = target;
cmd.curveid = id;
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_RESET);
cmd.hdr.len = cpu_to_le16(2);
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
return ret;
}
return 0;
}
int sinfonia_gettonecurve(struct sinfonia_usbdev *usbh, int type, char *fname)
{
struct sinfonia_readtone_cmd cmd;
struct sinfonia_readtone_resp resp;
int ret, num = 0;
uint8_t *data;
uint16_t curves[TONE_CURVE_SIZE] = { 0 };
int i,j;
cmd.target = type;
cmd.curveid = TONE_CURVE_ID;
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_READTONE);
cmd.hdr.len = cpu_to_le16(1);
resp.hdr.payload_len = 0;
INFO("Dump %s Tone Curve to '%s'\n", sinfonia_tonecurve_statuses(type), fname);
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
return ret;
}
if (le16_to_cpu(resp.hdr.payload_len) != (sizeof(struct sinfonia_readtone_resp) - sizeof(struct sinfonia_status_hdr)))
return -2;
resp.total_size = le16_to_cpu(resp.total_size);
data = malloc(resp.total_size * 2);
if (!data) {
ERROR("Memory Allocation Failure!\n");
return -1;
}
i = 0;
while (i < resp.total_size) {
ret = read_data(usbh->dev, usbh->endp_up,
data + i,
resp.total_size * 2 - i,
&num);
if (ret < 0)
goto done;
i += num;
}
i = j = 0;
while (i < resp.total_size) {
memcpy(curves + j, data + i+2, data[i+1]);
j += data[i+1] / 2;
i += data[i+1] + 2;
}
/* Open file and write it out */
{
int tc_fd = open(fname, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
if (tc_fd < 0) {
ret = -1;
goto done;
}
for (i = 0 ; i < TONE_CURVE_SIZE; i++) {
/* Byteswap appropriately */
curves[i] = cpu_to_be16(le16_to_cpu(curves[i]));
}
write(tc_fd, curves, TONE_CURVE_SIZE * sizeof(uint16_t));
close(tc_fd);
}
done:
free(data);
return ret;
}
int sinfonia_settonecurve(struct sinfonia_usbdev *usbh, int target, char *fname)
{
struct sinfonia_update_cmd cmd;
struct sinfonia_status_hdr resp;
int ret, num = 0;
INFO("Set %s Tone Curve from '%s'\n", sinfonia_update_targets(target), fname);
uint16_t *data = malloc(TONE_CURVE_SIZE * sizeof(uint16_t));
if (!data) {
ERROR("Memory Allocation Failure!\n");
return -1;
}
/* Read in file */
if ((ret = dyesub_read_file(fname, data, TONE_CURVE_SIZE * sizeof(uint16_t), NULL))) {
ERROR("Failed to read Tone Curve file\n");
goto done;
}
/* Byteswap data to local CPU.. */
for (ret = 0; ret < TONE_CURVE_SIZE ; ret++) {
data[ret] = be16_to_cpu(data[ret]);
}
/* Set up command */
cmd.target = target;
cmd.curve_id = TONE_CURVE_ID;
cmd.reserved[0] = cmd.reserved[1] = cmd.reserved[2] = 0;
cmd.reset = 0;
cmd.size = cpu_to_le32(TONE_CURVE_SIZE * sizeof(uint16_t));
cmd.hdr.cmd = cpu_to_le16(SINFONIA_CMD_UPDATE);
cmd.hdr.len = cpu_to_le16(sizeof(struct sinfonia_update_cmd)-sizeof(cmd.hdr));
/* Byteswap data to format printer is expecting.. */
for (ret = 0; ret < TONE_CURVE_SIZE ; ret++) {
data[ret] = cpu_to_le16(data[ret]);
}
if ((ret = sinfonia_docmd(usbh,
(uint8_t*)&cmd, sizeof(cmd),
(uint8_t*)&resp, sizeof(resp),
&num)) < 0) {
return ret;
}
/* Sent transfer */
if ((ret = send_data(usbh->dev, usbh->endp_down,
(uint8_t *) data, TONE_CURVE_SIZE * sizeof(uint16_t)))) {
goto done;
}
done:
free(data);
return ret;
}
const char *sinfonia_update_targets (uint8_t v) {
switch (v) {
case UPDATE_TARGET_USER:
return "User";
case UPDATE_TARGET_CURRENT:
return "Current";
default:
return "Unknown";
}
}
const char *sinfonia_tonecurve_statuses (uint8_t v)
{
switch(v) {
case 0:
return "Initial";
case 1:
return "UserSet";
case 2:
return "Current";
default:
return "Unknown";
}
}
const char *sinfonia_bank_statuses(uint8_t v)
{
switch (v) {
case BANK_STATUS_FREE:
return "Free";
case BANK_STATUS_XFER:
return "Xfer";
case BANK_STATUS_FULL:
return "Full";
case BANK_STATUS_PRINTING:
return "Printing";
default:
return "Unknown";
}
}
const char *sinfonia_error_str(uint8_t v) {
switch (v) {
case ERROR_NONE:
return "None";
case ERROR_INVALID_PARAM:
return "Invalid Command Parameter";
case ERROR_MAIN_APP_INACTIVE:
return "Main App Inactive";
case ERROR_COMMS_TIMEOUT:
return "Main Communication Timeout";
case ERROR_MAINT_NEEDED:
return "Maintenance Needed";
case ERROR_BAD_COMMAND:
return "Inappropriate Command";
case ERROR_PRINTER:
return "Printer Error";
case ERROR_BUFFER_FULL:
return "Buffer Full";
default:
return "Unknown";
}
}
const char *sinfonia_media_types(uint8_t v) {
switch (v) {
case MEDIA_TYPE_UNKNOWN:
return "Unknown";
case MEDIA_TYPE_PAPER:
return "Paper";
default:
return "Unknown";
}
}
const char *sinfonia_print_methods (uint8_t v) {
switch (v & 0xf) {
case PRINT_METHOD_STD:
return "Standard";
case PRINT_METHOD_COMBO_2:
return "2up";
case PRINT_METHOD_COMBO_3:
return "3up";
case PRINT_METHOD_SPLIT:
return "Split";
case PRINT_METHOD_DOUBLE:
return "Double";
default:
return "Unknown";
}
}
const char *sinfonia_print_modes(uint8_t v) {
switch (v) {
case PRINT_MODE_NO_OC:
return "No Overcoat";
case PRINT_MODE_GLOSSY:
return "Glossy";
case PRINT_MODE_MATTE:
return "Matte";
default:
return "Unknown";
}
}
const char *sinfonia_fwinfo_targets (uint8_t v) {
switch (v) {
case FWINFO_TARGET_MAIN_BOOT:
return "Main Boot ";
case FWINFO_TARGET_MAIN_APP:
return "Main App ";
case FWINFO_TARGET_DSP:
return "DSP ";
case FWINFO_TARGET_PRINT_TABLES:
return "Print Tables";
default:
return "Unknown ";
}
}
const char *sinfonia_print_codes (uint8_t v, int eightinch) {
if (eightinch) {
switch (v) {
case CODE_8x10:
return "8x10";
case CODE_8x12:
return "8x12";
case CODE_8x4:
return "8x4";
case CODE_8x5:
return "8x5";
case CODE_8x6:
return "8x6";
case CODE_8x8:
return "8x8";
case CODE_8x4_2:
return "8x4*2";
case CODE_8x5_2:
return "8x5*2";
case CODE_8x6_2:
return "8x6*2";
case CODE_8x4_3:
return "8x4*3";
default:
return "Unknown";
}
}
switch (v) {
case CODE_4x6:
return "4x6";
case CODE_3_5x5:
return "3.5x5";
case CODE_5x7:
return "5x7";
case CODE_6x9:
return "6x9";
case CODE_6x8:
return "6x8";
case CODE_2x6:
return "2x6";
case CODE_6x6:
return "6x6";
case CODE_89x60mm:
return "89x60mm";
case CODE_89x59mm:
return "89x59mm";
case CODE_89x58mm:
return "89x58mm";
case CODE_89x57mm:
return "89x57mm";
case CODE_89x56mm:
return "89x56mm";
case CODE_89x55mm:
return "89x55mm";
default:
return "Unknown";
}
}
const char *sinfonia_status_str(uint8_t v) {
switch (v) {
case STATUS_READY:
return "Ready";
case STATUS_INIT_CPU:
return "Initializing CPU";
case STATUS_INIT_RIBBON:
return "Initializing Ribbon";
case STATUS_INIT_PAPER:
return "Loading Paper";
case STATUS_THERMAL_PROTECT:
return "Thermal Protection";
case STATUS_USING_PANEL:
return "Using Operation Panel";
case STATUS_SELF_DIAG:
return "Processing Self Diagnosis";
case STATUS_DOWNLOADING:
return "Processing Download";
case STATUS_FEEDING_PAPER:
return "Feeding Paper";
case STATUS_PRE_HEAT:
return "Pre-Heating";
case STATUS_PRINT_Y:
return "Printing Yellow";
case STATUS_BACK_FEED_Y:
return "Back-Feeding - Yellow Complete";
case STATUS_PRINT_M:
return "Printing Magenta";
case STATUS_BACK_FEED_M:
return "Back-Feeding - Magenta Complete";
case STATUS_PRINT_C:
return "Printing Cyan";
case STATUS_BACK_FEED_C:
return "Back-Feeding - Cyan Complete";
case STATUS_PRINT_OP:
return "Laminating";
case STATUS_PAPER_CUT:
return "Cutting Paper";
case STATUS_PAPER_EJECT:
return "Ejecting Paper";
case STATUS_BACK_FEED_E:
return "Back-Feeding - Ejected";
case STATUS_FINISHED:
return "Print Finished";
case ERROR_PRINTER:
return "Printer Error";
default:
return "Unknown";
}
}
const char *sinfonia_cmd_names(uint16_t v) {
switch (le16_to_cpu(v)) {
case SINFONIA_CMD_GETSTATUS:
return "Get Status";
case SINFONIA_CMD_MEDIAINFO:
return "Get Media Info";
case SINFONIA_CMD_MODELNAME:
return "Get Model Name";
case SINFONIA_CMD_ERRORLOG:
return "Get Error Log";
case SINFONIA_CMD_GETPARAM:
return "Get Parameter";
case SINFONIA_CMD_GETSERIAL:
return "Get Serial Number";
case SINFONIA_CMD_PRINTSTAT:
return "Get Print ID Status";
case SINFONIA_CMD_EXTCOUNTER:
return "Get Extended Counters";
case SINFONIA_CMD_PRINTJOB:
return "Print";
case SINFONIA_CMD_CANCELJOB:
return "Cancel Print";
case SINFONIA_CMD_FLASHLED:
return "Flash LEDs";
case SINFONIA_CMD_RESET:
return "Reset";
case SINFONIA_CMD_READTONE:
return "Read Tone Curve";
case SINFONIA_CMD_BUTTON:
return "Button Enable";
case SINFONIA_CMD_SETPARAM:
return "Set Parameter";
case SINFONIA_CMD_GETUNIQUE:
return "Get Unique String";
case SINFONIA_CMD_GETCORR:
return "Get Image Correction Parameter";
case SINFONIA_CMD_GETEEPROM:
return "Get EEPROM Backup Parameter";
case SINFONIA_CMD_SETEEPROM:
return "Set EEPROM Backup Parameter";
case SINFONIA_CMD_SETTIME:
return "Time Setting";
case SINFONIA_CMD_FWINFO:
return "Get Firmware Info";
case SINFONIA_CMD_UPDATE:
return "Update";
case SINFONIA_CMD_SETUNIQUE:
return "Set Unique String";
default:
return "Unknown Command";
}
}
const char *kodak6_mediatypes(int type)
{
switch(type) {
case KODAK6_MEDIA_NONE:
return "No media";
case KODAK6_MEDIA_6R:
case KODAK6_MEDIA_6TR2:
case KODAK7_MEDIA_6R:
return "Kodak 6R";
default:
return "Unknown";
}
return "Unknown";
}
void kodak6_dumpmediacommon(int type)
{
switch (type) {
case KODAK6_MEDIA_6R:
INFO("Media type: 6R (Kodak 197-4096 or equivalent)\n");
break;
case KODAK6_MEDIA_6TR2:
INFO("Media type: 6R (Kodak 396-2941 or equivalent)\n");
break;
default:
INFO("Media type %02x (unknown, please report!)\n", type);
break;
}
}
/* Below are for S1145 (EK68xx) and S1245 only! */
const char *sinfonia_1x45_status_str(uint8_t status1, uint32_t status2, uint8_t error)
{
switch(status1) {
case STATE_STATUS1_STANDBY:
return "Standby (Ready)";
case STATE_STATUS1_WAIT:
switch (status2) {
case WAIT_STATUS2_INIT:
return "Wait (Initializing)";
case WAIT_STATUS2_RIBBON:
return "Wait (Ribbon Winding)";
case WAIT_STATUS2_THERMAL:
return "Wait (Thermal Protection)";
case WAIT_STATUS2_OPERATING:
return "Wait (Operating)";
case WAIT_STATUS2_BUSY:
return "Wait (Busy)";
default:
return "Wait (Unknown)";
}
case STATE_STATUS1_ERROR:
switch (status2) {
case ERROR_STATUS2_CTRL_CIRCUIT:
switch (error) {
case CTRL_CIR_ERROR_EEPROM1:
return "Error (EEPROM1)";
case CTRL_CIR_ERROR_EEPROM2:
return "Error (EEPROM2)";
case CTRL_CIR_ERROR_DSP:
return "Error (DSP)";
case CTRL_CIR_ERROR_CRC_MAIN:
return "Error (Main CRC)";
case CTRL_CIR_ERROR_DL_MAIN:
return "Error (Main Download)";
case CTRL_CIR_ERROR_CRC_DSP:
return "Error (DSP CRC)";
case CTRL_CIR_ERROR_DL_DSP:
return "Error (DSP Download)";
case CTRL_CIR_ERROR_ASIC:
return "Error (ASIC)";
case CTRL_CIR_ERROR_DRAM:
return "Error (DRAM)";
case CTRL_CIR_ERROR_DSPCOMM:
return "Error (DSP Communincation)";
default:
return "Error (Unknown Circuit)";
}
case ERROR_STATUS2_MECHANISM_CTRL:
switch (error) {
case MECH_ERROR_HEAD_UP:
return "Error (Head Up Mechanism)";
case MECH_ERROR_HEAD_DOWN:
return "Error (Head Down Mechanism)";
case MECH_ERROR_MAIN_PINCH_UP:
return "Error (Main Pinch Up Mechanism)";
case MECH_ERROR_MAIN_PINCH_DOWN:
return "Error (Main Pinch Down Mechanism)";
case MECH_ERROR_SUB_PINCH_UP:
return "Error (Sub Pinch Up Mechanism)";
case MECH_ERROR_SUB_PINCH_DOWN:
return "Error (Sub Pinch Down Mechanism)";
case MECH_ERROR_FEEDIN_PINCH_UP:
return "Error (Feed-in Pinch Up Mechanism)";
case MECH_ERROR_FEEDIN_PINCH_DOWN:
return "Error (Feed-in Pinch Down Mechanism)";
case MECH_ERROR_FEEDOUT_PINCH_UP:
return "Error (Feed-out Pinch Up Mechanism)";
case MECH_ERROR_FEEDOUT_PINCH_DOWN:
return "Error (Feed-out Pinch Down Mechanism)";
case MECH_ERROR_CUTTER_LR:
return "Error (Left->Right Cutter)";
case MECH_ERROR_CUTTER_RL:
return "Error (Right->Left Cutter)";
default:
return "Error (Unknown Mechanism)";
}
case ERROR_STATUS2_SENSOR:
switch (error) {
case SENSOR_ERROR_CUTTER:
return "Error (Cutter Sensor)";
case SENSOR_ERROR_HEAD_DOWN:
return "Error (Head Down Sensor)";
case SENSOR_ERROR_HEAD_UP:
return "Error (Head Up Sensor)";
case SENSOR_ERROR_MAIN_PINCH_DOWN:
return "Error (Main Pinch Down Sensor)";
case SENSOR_ERROR_MAIN_PINCH_UP:
return "Error (Main Pinch Up Sensor)";
case SENSOR_ERROR_FEED_PINCH_DOWN:
return "Error (Feed Pinch Down Sensor)";
case SENSOR_ERROR_FEED_PINCH_UP:
return "Error (Feed Pinch Up Sensor)";
case SENSOR_ERROR_EXIT_PINCH_DOWN:
return "Error (Exit Pinch Up Sensor)";
case SENSOR_ERROR_EXIT_PINCH_UP:
return "Error (Exit Pinch Up Sensor)";
case SENSOR_ERROR_LEFT_CUTTER:
return "Error (Left Cutter Sensor)";
case SENSOR_ERROR_RIGHT_CUTTER:
return "Error (Right Cutter Sensor)";
case SENSOR_ERROR_CENTER_CUTTER:
return "Error (Center Cutter Sensor)";
case SENSOR_ERROR_UPPER_CUTTER:
return "Error (Upper Cutter Sensor)";
case SENSOR_ERROR_PAPER_FEED_COVER:
return "Error (Paper Feed Cover)";
default:
return "Error (Unknown Sensor)";
}
case ERROR_STATUS2_COVER_OPEN:
switch (error) {
case COVER_OPEN_ERROR_UPPER:
return "Error (Upper Cover Open)";
case COVER_OPEN_ERROR_LOWER:
return "Error (Lower Cover Open)";
default:
return "Error (Unknown Cover Open)";
}