/* * Mitsubishi CP-D90DW Photo Printer CUPS backend * * (c) 2019-2020 Solomon Peachy * * The latest version of this program can be found at: * * http://git.shaftnet.org/cgit/selphy_print.git * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0+ * */ #define BACKEND mitsud90_backend #include "backend_common.h" #include "backend_mitsu.h" #define USB_VID_MITSU 0x06D3 #define USB_PID_MITSU_D90 0x3B60 #define USB_PID_MITSU_CPM1 0x3B80 /* CPM1 stuff */ #define CPM1_LAMINATE_STRIDE 1852 #define CPM1_LAMINATE_FILE "M1_MAT02.raw" #define CPM1_CPC_FNAME "CPM1_N1.csv" #define CPM1_CPC_G1_FNAME "CPM1_G1.csv" #define CPM1_CPC_G5_FNAME "CPM1_G5.csv" #define CPM1_LUT_FNAME "CPM1_NL.lut" /* Printer data structures */ #define COM_STATUS_TYPE_MODEL 0x01 // 10, null-terminated ASCII. 'CPD90D' #define COM_STATUS_TYPE_x02 0x02 // 1, 0x5f ? #define CM1_STATUS_TYPE_ISERIAL 0x03 // 24, full iSerial string in UTF16(LE) #define CM1_STATUS_TYPE_SERIAL 0x04 // 6, serial number only (ascii) #define CM1_STATUS_TYPE_FW_0a 0x0a // 8, 34 34 38 41 31 32 29 f4 (448A12) #define COM_STATUS_TYPE_FW_0b 0x0b // 8, 34 31 34 42 31 31 a7 de (414D11) #define COM_STATUS_TYPE_FW_MA 0x0c // 8, 34 31 35 41 38 31 86 bf (415A81) // MAIN FW #define COM_STATUS_TYPE_FW_F 0x0d // 8, 34 31 36 41 35 31 dc 8a (416A51) // FPGA FW #define COM_STATUS_TYPE_FW_T 0x0e // 8, 34 31 37 45 31 31 e7 e6 (417E11) // TABLE FW #define COM_STATUS_TYPE_FW_0f 0x0f // 8, 34 31 38 41 31 32 6c 64 (418A12) #define COM_STATUS_TYPE_FW_11 0x11 // 8, 34 32 31 51 31 31 74 f2 (421Q11) #define COM_STATUS_TYPE_FW_ME 0x13 // 8, 34 31 39 45 31 31 15 bf (419E11) // MECHA FW #define COM_STATUS_TYPE_ERROR 0x16 // 11 (see below) #define COM_STATUS_TYPE_MECHA 0x17 // 2 (see below) #define COM_STATUS_TYPE_x1e 0x1e // 1, power state or time? (x00) #define COM_STATUS_TYPE_TEMP 0x1f // 1 (see below) #define COM_STATUS_TYPE_x22 0x22 // 2, all 0 (counter?) #define COM_STATUS_TYPE_x28 0x28 // 2, next jobid? (starts 00 01 at power cycle, increments by 1 for each print) #define COM_STATUS_TYPE_x29 0x29 // 8, e0 07 00 00 21 e6 b3 22 or e0 07 80 96 3f 28 12 2d #define COM_STATUS_TYPE_MEDIA 0x2a // 10 (see below) #define COM_STATUS_TYPE_x2b 0x2b // 2, all 0 (counter?) #define COM_STATUS_TYPE_x2c 0x2c // 2, 00 56 (counter?) or 00 28 #define COM_STATUS_TYPE_x65 0x65 // 50, see below #define D90_STATUS_TYPE_ISEREN 0x82 // 1, 80 (iserial disabled) #define COM_STATUS_TYPE_x83 0x83 // 1, 00 #define D90_STATUS_TYPE_x84 0x84 // 1, 00 //#define D90_STATUS_TYPE_x85 0x85 // 2, 00 ?? BE, wait time? // combined total of 5. struct mitsud90_fw_resp_single { uint8_t version[6]; uint16_t csum; } __attribute__((packed)); struct mitsud90_media_resp { uint8_t hdr[4]; /* e4 47 44 30 */ struct { uint8_t brand; uint8_t type; uint8_t unk_a[2]; uint16_t capacity; /* BE */ uint16_t remain; /* BE */ uint8_t unk_b[2]; } __attribute__((packed)) media; /* COM_STATUS_TYPE_MEDIA */ } __attribute__((packed)); struct mitsud90_status_resp { uint8_t hdr[4]; /* e4 47 44 30 */ /* COM_STATUS_TYPE_ERROR */ uint8_t code[2]; /* 00 is ok, nonzero is error */ uint8_t unk[9]; /* COM_STATUS_TYPE_MECHA */ uint8_t mecha[2]; /* COM_STATUS_TYPE_TEMP */ uint8_t temp; } __attribute__((packed)); struct mitsud90_info_resp { uint8_t hdr[4]; /* e4 47 44 30 */ uint8_t model[10]; uint8_t x02; struct mitsud90_fw_resp_single fw_vers[7]; uint8_t x1e; uint8_t x22[2]; uint16_t x28; uint8_t x29[8]; uint8_t x2b[2]; uint8_t x2c[2]; uint8_t x65[50]; uint8_t iserial; uint8_t x83; uint8_t x84; } __attribute__((packed)); struct mitsum1_info_resp { uint8_t hdr[4]; /* e4 47 44 30 */ uint8_t model[10]; uint8_t x02; struct mitsud90_fw_resp_single fw_vers[8]; uint8_t x1e; uint8_t x22[2]; uint16_t x28; uint8_t x29[8]; uint8_t x2b[2]; uint8_t x2c[2]; uint8_t x65[50]; uint8_t x83; } __attribute__((packed)); #define D90_MECHA_STATUS_IDLE 0x00 #define D90_MECHA_STATUS_PRINTING 0x50 #define D90_MECHA_STATUS_INIT 0x80 #define D90_MECHA_STATUS_INIT_FEEDCUT 0x10 #define D90_MECHA_STATUS_PRINT_FEEDING 0x10 // feeding ? #define D90_MECHA_STATUS_PRINT_PRE_Y 0x21 // pre Y ? #define D90_MECHA_STATUS_PRINT_Y 0x22 // Y ? #define D90_MECHA_STATUS_PRINT_PRE_M 0x23 // pre M ? #define D90_MECHA_STATUS_PRINT_M 0x24 // M ? #define D90_MECHA_STATUS_PRINT_PRE_C 0x25 // pre C ? guess! #define D90_MECHA_STATUS_PRINT_C 0x26 // C ? #define D90_MECHA_STATUS_PRINT_PRE_OC 0x27 // pre OC ? guess! #define D90_MECHA_STATUS_PRINT_OC 0x28 // O C? #define D90_MECHA_STATUS_PRINTING_x2f 0x2f // ?? #define D90_MECHA_STATUS_PRINTING_x38 0x38 // eject ? #define D90_ERROR_STATUS_OK 0x00 #define D90_ERROR_STATUS_OK_WARMING 0x40 #define D90_ERROR_STATUS_OK_COOLING 0x80 #define D90_ERROR_STATUS_RIBBON 0x21 #define D90_ERROR_STATUS_PAPER 0x22 #define D90_ERROR_STATUS_PAP_RIB 0x23 #define D90_ERROR_STATUS_OPEN 0x29 struct mitsud90_job_query { uint8_t hdr[4]; /* 1b 47 44 31 */ uint16_t jobid; /* BE */ } __attribute__((packed)); struct mitsud90_job_resp { uint8_t hdr[4]; /* e4 47 44 31 */ uint8_t unk1; uint8_t unk2; uint16_t unk3; } __attribute__((packed)); struct mitsud90_job_hdr { uint8_t hdr[6]; /* 1b 53 50 30 00 33 */ uint16_t cols; /* BE */ uint16_t rows; /* BE */ uint8_t waittime; /* 0-100 */ uint8_t unk[3]; /* 00 00 01 */ // XXX 00 01 might be the jobid? uint8_t margincut; /* 1 for enabled, 0 for disabled */ uint8_t numcuts; /* # of cuts (0-3) but 0-8 legal */ /*@0x10*/ struct { uint16_t position; // @ center? uint8_t margincut; /* 0 for double cut, 1 for single */ uint8_t zeropad; } cutlist[8] __attribute__((packed)); /* 3 is current legal max */ /*@x30*/uint8_t overcoat; /* 0 glossy, matte is 2 (D90) or 3 (M1) */ uint8_t quality; /* 0 is automatic, 5 is "fast" on M1 */ uint8_t colorcorr; /* Always 1 on M1 */ uint8_t sharp_h; /* Always 0 on M1 */ uint8_t sharp_v; /* Always 0 on M1 */ uint8_t zero_b[4]; /* 0 on D90, on M1, zero_b[3] is the not-raw flag */ struct { uint16_t pano_on; /* 0x0001 when pano is on, or always 0x0002 on M1 */ uint8_t pano_tot; /* 2 or 3 */ uint8_t pano_pg; /* 1, 2, 3 */ uint16_t pano_rows; /* always 0x097c (BE), ie 2428 ie 8" print */ uint16_t pano_rows2; /* Always 0x30 less than pano_rows */ uint16_t pano_zero; /* 0x0000 */ uint16_t pano_overlap; /* always 0x0258, ie 600 or 2 inches */ uint8_t pano_unk[4]; /* 00 0c 00 06 */ } pano __attribute__((packed)); uint8_t zero_c[7]; /*@x50*/uint8_t unk_m1; /* 00 on d90 & m1 Linux, 01 on m1 (windows) */ uint8_t rgbrate; /* M1 only, see below */ uint8_t oprate; /* M1 only, see below */ uint8_t zero_fill[429]; } __attribute__((packed)); struct mitsud90_plane_hdr { uint8_t hdr[6]; /* 1b 5a 54 01 00 09 */ uint16_t origin_cols; /* Leave at 0 */ uint16_t origin_rows; /* Leave at 0 */ uint16_t cols; /* BE */ uint16_t rows; /* BE */ uint8_t zero_a[6]; uint16_t lamcols; /* BE (M1 only, OC=3) should be cols+origin_cols */ uint16_t lamrows; /* BE (M1 only, OC=3) should be rows+origin_rows+12 */ uint8_t zero_b[8]; uint8_t unk_m1[8]; /* 07 e4 02 19 xx xx xx 00 always incrementing. timestamp? Only seen from win-generated jobs? */ uint8_t zero_fill[472]; } __attribute__((packed)); struct mitsud90_job_footer { uint8_t hdr[4]; /* 1b 42 51 31 */ uint16_t seconds; /* BE, 0x0005 by default (windows), 0x00ff means don't wait */ } __attribute__((packed)); struct mitsud90_memcheck { uint8_t hdr[4]; /* 1b 47 44 33 */ uint8_t unk[2]; /* 00 33 */ uint16_t cols; /* BE */ uint16_t rows; /* BE */ uint8_t unk_b[4]; /* 64 00 00 01 */ uint8_t zero_fill[498]; } __attribute__((packed)); struct mitsud90_memcheck_resp { uint8_t hdr[4]; /* e4 47 44 43 */ uint8_t size_bad; /* 0x00 is ok */ uint8_t mem_bad; /* 0x00 is ok */ } __attribute__((packed)); static const char *mitsud90_mecha_statuses(const uint8_t *code) { switch (code[0]) { case D90_MECHA_STATUS_IDLE: return "Idle"; case D90_MECHA_STATUS_PRINTING: switch (code[1]) { case D90_MECHA_STATUS_PRINT_FEEDING: return "Feeding Media"; case D90_MECHA_STATUS_PRINT_PRE_Y: case D90_MECHA_STATUS_PRINT_Y: return "Printing Yellow"; case D90_MECHA_STATUS_PRINT_PRE_M: case D90_MECHA_STATUS_PRINT_M: return "Printing Magenta"; case D90_MECHA_STATUS_PRINT_PRE_C: case D90_MECHA_STATUS_PRINT_C: return "Printing Cyan"; case D90_MECHA_STATUS_PRINT_PRE_OC: case D90_MECHA_STATUS_PRINT_OC: return "Applying Overcoat"; case D90_MECHA_STATUS_PRINTING_x2f: case D90_MECHA_STATUS_PRINTING_x38: return "Ejecting Media?"; default: return "Printing (Unknown)"; } case D90_MECHA_STATUS_INIT: if (code[1] == D90_MECHA_STATUS_INIT_FEEDCUT) return "Feed & Cut paper"; else return "Initializing"; default: return "Unknown"; } } static const char *mitsud90_error_codes(const uint8_t *code) { switch(code[0]) { case D90_ERROR_STATUS_OK: if (code[1] & D90_ERROR_STATUS_OK_WARMING) return "Heating"; else if (code[1] & D90_ERROR_STATUS_OK_COOLING) return "Cooling Down"; else return "Idle"; case D90_ERROR_STATUS_RIBBON: switch (code[1]) { case 0x00: return "Ribbon exhausted"; case 0x10: return "Insufficient remaining ribbon"; case 0x20: return "Ribbon Cue Timeout"; case 0x30: return "Cannot Cue Ribbon"; case 0x90: return "No ribbon"; default: return "Unknown Ribbon Error"; } case D90_ERROR_STATUS_PAPER: switch (code[1]) { case 0x00: return "No paper"; case 0x02: return "Paper exhausted"; default: return "Unknown Paper Error"; } case D90_ERROR_STATUS_PAP_RIB: switch (code[1]) { case 0x00: return "Ribbon/Paper mismatch"; case 0x90: return "Ribbon/Job mismatch"; default: return "Unknown ribbon match error"; } case 0x26: return "Illegal Ribbon"; case 0x28: return "Cut Bin Missing"; case D90_ERROR_STATUS_OPEN: switch (code[1]) { case 0x00: return "Printer Open during Stop"; case 0x10: return "Printer Open during Initialization"; case 0x90: return "Printer Open during Printing"; default: return "Unknown Door error"; } case 0x2f: return "Printer turned off during printing"; case 0x31: return "Ink feed stop"; case 0x32: return "Ink Skip 1 timeout"; case 0x33: return "Ink Skip 2 timeout"; case 0x34: return "Ink Sticking"; case 0x35: return "Ink return stop"; case 0x36: return "Ink Rewind timeout"; case 0x37: return "Winding sensing error"; case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: return "Paper Jam"; case 0x60: if (code[1] == 0x20) return "Preheat error"; else if (code[1] == 0x04) return "Humidity sensor error"; else if (code[1] & 0x1f) return "Thermistor error"; else return "Unknown error"; case 0x61: if (code[1] == 0x00) return "Color Sensor Error"; else if (code[1] & 0x10) return "Matte OP Error"; else return "Unknown error"; case 0x62: return "Data Transfer error"; case 0x63: return "EEPROM error"; case 0x64: return "Flash access error"; case 0x65: return "FPGA configuration error"; case 0x66: return "Power voltage Error"; case 0x67: return "RFID access error"; case 0x68: if (code[1] == 0x00) return "Fan Lock Error"; else if (code[1] == 0x90) return "MDA Error"; else return "Unknown error"; case 0x69: if (code[1] == 0x10) return "DDR Error"; else if (code[1] == 0x00) return "Firmware Error"; else return "Unknown error"; case 0x70: case 0x71: case 0x73: case 0x75: return "Mechanical Error (check ribbon and power cycle)"; case 0x82: return "USB Timeout"; case 0x83: return "Illegal paper size"; case 0x84: return "Illegal parameter"; case 0x85: return "Job Cancel"; case 0x89: return "Last Job Error"; default: return "Unknown"; } } static void mitsud90_dump_status(struct mitsud90_status_resp *resp) { INFO("Error Status: %s (%02x %02x) -- %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", mitsud90_error_codes(resp->code), resp->code[0], resp->code[1], resp->unk[0], resp->unk[1], resp->unk[2], resp->unk[3], resp->unk[4], resp->unk[5], resp->unk[6], resp->unk[7], resp->unk[8]); INFO("Printer Status: %s (%02x %02x)\n", mitsud90_mecha_statuses(resp->mecha), resp->mecha[0], resp->mecha[1]); INFO("Temperature Status: %s\n", mitsu_temperatures(resp->temp)); } /* Private data structure */ struct mitsud90_printjob { size_t jobsize; int copies; uint8_t *databuf; uint32_t datalen; int is_raw; int m1_colormode; struct mitsud90_job_hdr hdr; int has_footer; struct mitsud90_job_footer footer; }; struct mitsud90_ctx { struct libusb_device_handle *dev; uint8_t endp_up; uint8_t endp_down; int type; char serno[7]; /* Used in parsing.. */ struct mitsud90_job_footer holdover; int holdover_on; /* For the CP-M1 family */ struct mitsu_lib lib; struct marker marker; }; static int mitsud90_query_media(struct mitsud90_ctx *ctx, struct mitsud90_media_resp *resp) { uint8_t cmdbuf[8]; int ret, num; cmdbuf[0] = 0x1b; cmdbuf[1] = 0x47; cmdbuf[2] = 0x44; cmdbuf[3] = 0x30; cmdbuf[4] = 0; cmdbuf[5] = 0; cmdbuf[6] = 0x01; /* Number of commands */ cmdbuf[7] = COM_STATUS_TYPE_MEDIA; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, sizeof(cmdbuf)))) return ret; memset(resp, 0, sizeof(*resp)); ret = read_data(ctx->dev, ctx->endp_up, (uint8_t*) resp, sizeof(*resp), &num); if (ret < 0) return ret; if (num != sizeof(*resp)) { ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(*resp)); return 4; } return CUPS_BACKEND_OK; } static int mitsud90_query_status(struct mitsud90_ctx *ctx, struct mitsud90_status_resp *resp) { uint8_t cmdbuf[10]; int ret, num; cmdbuf[0] = 0x1b; cmdbuf[1] = 0x47; cmdbuf[2] = 0x44; cmdbuf[3] = 0x30; cmdbuf[4] = 0; cmdbuf[5] = 0; cmdbuf[6] = 0x03; /* Number of commands */ cmdbuf[7] = COM_STATUS_TYPE_ERROR; cmdbuf[8] = COM_STATUS_TYPE_MECHA; cmdbuf[9] = COM_STATUS_TYPE_TEMP; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, sizeof(cmdbuf)))) return ret; memset(resp, 0, sizeof(*resp)); ret = read_data(ctx->dev, ctx->endp_up, (uint8_t*) resp, sizeof(*resp), &num); if (ret < 0) return ret; if (num != sizeof(*resp)) { ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(*resp)); return 4; } return CUPS_BACKEND_OK; } static int mitsud90_get_serno(struct mitsud90_ctx *ctx) { uint8_t cmdbuf[32]; int ret, num; /* Send Request */ cmdbuf[0] = 0x1b; cmdbuf[1] = 0x61; cmdbuf[2] = 0x36; cmdbuf[3] = 0x36; cmdbuf[4] = 0x41; cmdbuf[5] = 0xbe; cmdbuf[6] = 0x00; cmdbuf[7] = 0x00; cmdbuf[8] = 0x00; cmdbuf[9] = 0x06; cmdbuf[10] = 0x00; cmdbuf[11] = 0x00; cmdbuf[12] = 0x00; cmdbuf[13] = 0x30; cmdbuf[14] = 0xff; cmdbuf[15] = 0xff; cmdbuf[16] = 0xff; cmdbuf[17] = 0xf9; cmdbuf[18] = 0xff; cmdbuf[19] = 0xff; cmdbuf[20] = 0xff; cmdbuf[21] = 0xcf; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, 22))) return ret; ret = read_data(ctx->dev, ctx->endp_up, cmdbuf, sizeof(cmdbuf), &num); /* Store it */ memcpy(ctx->serno, &cmdbuf[22], 6); ctx->serno[6] = 0; return ret; } /* Generic functions */ static void *mitsud90_init(void) { struct mitsud90_ctx *ctx = malloc(sizeof(struct mitsud90_ctx)); if (!ctx) { ERROR("Memory Allocation Failure!\n"); return NULL; } memset(ctx, 0, sizeof(struct mitsud90_ctx)); return ctx; } static int mitsud90_attach(void *vctx, struct libusb_device_handle *dev, int type, uint8_t endp_up, uint8_t endp_down, int iface, uint8_t jobid) { struct mitsud90_ctx *ctx = vctx; struct mitsud90_media_resp resp; UNUSED(jobid); UNUSED(iface); ctx->dev = dev; ctx->endp_up = endp_up; ctx->endp_down = endp_down; ctx->type = type; if (test_mode < TEST_MODE_NOATTACH) { if (mitsud90_query_media(ctx, &resp)) return CUPS_BACKEND_FAILED; if (mitsud90_get_serno(ctx)) return CUPS_BACKEND_FAILED; } else { resp.media.brand = 0xff; resp.media.type = 0x0f; resp.media.capacity = cpu_to_be16(230); resp.media.remain = cpu_to_be16(200); } ctx->marker.color = "#00FFFF#FF00FF#FFFF00"; ctx->marker.numtype = resp.media.type; ctx->marker.name = mitsu_media_types(ctx->type, resp.media.brand, resp.media.type); ctx->marker.levelmax = be16_to_cpu(resp.media.capacity); ctx->marker.levelnow = be16_to_cpu(resp.media.remain); if (ctx->type == P_MITSU_M1) { #if defined(WITH_DYNAMIC) /* Attempt to open the library */ if (mitsu_loadlib(&ctx->lib, ctx->type)) #endif WARNING("Dynamic library support not loaded, will be unable to print."); } // XXX do some runtime checks for FW versions. // do a MA FW comparison; CP-M1 v1.00 is 450B11. ME is 454C11 // CP-D90-P v2.10 is 415A81 or 415G11 (revA vs revB) ME is 419E11 // CP-D90DW v2.10 is 415B94 or 415E54 (??) ME is 419E42 // if nothing else, D90 v2.10 is needed for panorama. // D90DW-P and D90DW share same USB VID/PID. Not sure how to tell // them apart other than FW. No idea what functional differences are. return CUPS_BACKEND_OK; } static void mitsud90_teardown(void *vctx) { struct mitsud90_ctx *ctx = vctx; if (!ctx) return; if (ctx->type == P_MITSU_M1) { mitsu_destroylib(&ctx->lib); } free(ctx); } static void mitsud90_cleanup_job(const void *vjob) { const struct mitsud90_printjob *job = vjob; if (job->databuf) free(job->databuf); free((void*)job); } /* Sanity check some stuff */ STATIC_ASSERT(sizeof(struct mitsud90_job_hdr) == 512); STATIC_ASSERT(sizeof(struct mitsud90_plane_hdr) == 512); static int mitsud90_main_loop(void *vctx, const void *vjob); static int mitsud90_read_parse(void *vctx, const void **vjob, int data_fd, int copies) { struct mitsud90_ctx *ctx = vctx; int i, remain; struct mitsud90_printjob *job; if (!ctx) return CUPS_BACKEND_FAILED; job = malloc(sizeof(*job)); if (!job) { ERROR("Memory allocation failure!\n"); return CUPS_BACKEND_RETRY_CURRENT; } memset(job, 0, sizeof(*job)); job->jobsize = sizeof(*job); job->copies = copies; /* Just allocate a worst-case buffer */ job->datalen = 0; job->databuf = malloc(sizeof(struct mitsud90_job_hdr) + sizeof(struct mitsud90_plane_hdr) + 1852*2729*3 + 1024); if (!job->databuf) { ERROR("Memory allocation failure!\n"); mitsud90_cleanup_job(job); return CUPS_BACKEND_RETRY_CURRENT; } /* Make sure there's no holdover */ if (ctx->holdover_on) { memcpy(job->databuf, &ctx->holdover, sizeof(ctx->holdover)); job->datalen += sizeof(ctx->holdover); ctx->holdover_on = 0; } /* Read in first header. */ remain = sizeof(struct mitsud90_job_hdr) - job->datalen; while (remain) { i = read(data_fd, (job->databuf + job->datalen), remain); if (i == 0) { mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } if (i < 0) { mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } remain -= i; job->datalen += i; } /* Move over to its final resting place, and reset */ memcpy(&job->hdr, job->databuf, sizeof(job->hdr)); job->datalen = 0; /* Sanity check header */ if (job->hdr.hdr[0] != 0x1b || job->hdr.hdr[1] != 0x53 || job->hdr.hdr[2] != 0x50 || job->hdr.hdr[3] != 0x30 ) { ERROR("Unrecognized data format (%02x%02x%02x%02x)!\n", job->hdr.hdr[0], job->hdr.hdr[1], job->hdr.hdr[2], job->hdr.hdr[3]); mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } /* More sanity checks */ if (job->hdr.pano.pano_on && ctx->type != P_MITSU_M1) { ERROR("Unable to handle panorama jobs yet\n"); mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } /* Sanity check cutlist */ if (job->hdr.numcuts > 3) { ERROR("Cut list too long!\n"); mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } if (job->hdr.numcuts >= 1) { int rows = be16_to_cpu(job->hdr.rows); for (i = 0 ; i < job->hdr.numcuts ; i++) { int min_size; int position = be16_to_cpu(job->hdr.cutlist[i].position); int last_position = (i == 0) ? 0 : be16_to_cpu(job->hdr.cutlist[i-1].position); if (i == 0) min_size = 613; else min_size = (job->hdr.cutlist[i-1].margincut) ? 601 : 660; // XXX inverted? if ((position - last_position) < min_size) { ERROR("Minumum cut#%d length is %d rows\n", i, min_size); mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } if ((rows - position) < min_size) { ERROR("Cut#%d is too close to end\n", i); mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } } } /* How many pixels do we need to read? */ remain = be16_to_cpu(job->hdr.cols) * be16_to_cpu(job->hdr.rows) * 3; if (ctx->type == P_MITSU_M1) { /* See if it's a special gutenprint "not-raw" job */ job->is_raw = !job->hdr.zero_b[3]; job->hdr.zero_b[3] = 0; /* If it's a raw M1 job, the pixels are 2 bytes each */ if (job->is_raw) remain *= 2; } /* Add in the plane header */ remain += sizeof(struct mitsud90_plane_hdr); /* Now read in the rest */ while(remain) { i = read(data_fd, job->databuf + job->datalen, remain); if (i == 0) { mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } if (i < 0) { mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } job->datalen += i; remain -= i; } /* Read in the footer. Hopefully... */ i = read(data_fd, (uint8_t*)&job->footer, sizeof(job->footer)); if (i == 0) { mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } if (i < 0) { mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } /* See if this is a job footer. If it is, keep, else holdover. */ if (job->footer.hdr[0] != 0x1b || job->footer.hdr[1] != 0x42 || job->footer.hdr[2] != 0x51 || job->footer.hdr[3] != 0x31) { memcpy(&ctx->holdover, &job->footer, sizeof(job->footer)); ctx->holdover_on = 1; // XXX generate a footer! } else { job->has_footer = 1; ctx->holdover_on = 0; } /* CP-M1 has... other considerations */ if (ctx->type == P_MITSU_M1 && !job->is_raw) { if (!ctx->lib.dl_handle) { ERROR("!!! Image Processing Library not found, aborting!\n"); mitsud90_cleanup_job(job); return CUPS_BACKEND_CANCEL; } job->m1_colormode = job->hdr.colorcorr; job->hdr.colorcorr = 1; if (job->m1_colormode == 0) { int ret = mitsu_apply3dlut(&ctx->lib, CPM1_LUT_FNAME, job->databuf + sizeof(struct mitsud90_plane_hdr), be16_to_cpu(job->hdr.cols), be16_to_cpu(job->hdr.rows), be16_to_cpu(job->hdr.cols) * 3, COLORCONV_RGB); if (ret) { mitsud90_cleanup_job(job); return ret; } job->hdr.colorcorr = 1; } } /* All further work is in main loop */ if (test_mode >= TEST_MODE_NOPRINT) mitsud90_main_loop(ctx, job); *vjob = job; return CUPS_BACKEND_OK; } static int cpm1_fillmatte(struct mitsud90_printjob *job) { int ret; int rows, cols; struct mitsud90_plane_hdr *phdr = (struct mitsud90_plane_hdr *) job->databuf; rows = be16_to_cpu(job->hdr.rows) + 12; cols = be16_to_cpu(job->hdr.cols); /* Fill in matte data */ ret = mitsu_readlamdata(CPM1_LAMINATE_FILE, CPM1_LAMINATE_STRIDE, job->databuf, &job->datalen, rows, cols, 1); if (ret) return ret; /* Update plane header and overall length */ phdr->lamcols = cpu_to_be16(cols); phdr->lamrows = cpu_to_be16(rows); return CUPS_BACKEND_OK; } static int mitsud90_main_loop(void *vctx, const void *vjob) { struct mitsud90_ctx *ctx = vctx; struct mitsud90_status_resp resp; uint8_t last_status[2] = {0xff, 0xff}; int sent; int ret; int copies; struct mitsud90_printjob *job = (struct mitsud90_printjob *)vjob; if (!ctx) return CUPS_BACKEND_FAILED; if (!job) return CUPS_BACKEND_FAILED; copies = job->copies; if (ctx->type == P_MITSU_M1 && !job->is_raw) { struct BandImage input; struct BandImage output; struct M1CPCData *cpc; input.origin_rows = input.origin_cols = 0; input.rows = be16_to_cpu(job->hdr.rows); input.cols = be16_to_cpu(job->hdr.cols); input.imgbuf = job->databuf + sizeof(struct mitsud90_plane_hdr); input.bytes_per_row = input.cols * 3; /* Allocate new buffer, with extra room for header */ uint8_t *convbuf = malloc(input.rows * input.cols * sizeof(uint16_t) * 3 + (job->hdr.overcoat? (input.rows + 12) * input.cols + CPM1_LAMINATE_STRIDE / 2 : 0) + sizeof(struct mitsud90_plane_hdr)); if (!convbuf) { ERROR("Memory allocation Failure!\n"); return CUPS_BACKEND_RETRY_CURRENT; } output.origin_rows = output.origin_cols = 0; output.rows = input.rows; output.cols = input.cols; output.imgbuf = convbuf + sizeof(struct mitsud90_plane_hdr); output.bytes_per_row = output.cols * 3 * sizeof(uint16_t); /* Copy over the plane header */ memcpy(convbuf, job->databuf, sizeof(struct mitsud90_plane_hdr)); // Do CContrastConv prior to RGBRate job->hdr.rgbrate = ctx->lib.M1_CalcRGBRate(input.rows, input.cols, input.imgbuf); /* Color modes: 0 LUT, NOMATCH 1 NOLUT, MATCH <-- ie use with external ICC profile! 2 NOLUT, NOMATCH */ const char *gammatab; if (job->m1_colormode == 1) { gammatab = CPM1_CPC_G5_FNAME; } else { /* Mode 0 or 2 */ gammatab = CPM1_CPC_G1_FNAME; } cpc = ctx->lib.M1_GetCPCData(corrtable_path, CPM1_CPC_FNAME, gammatab); if (!cpc) { ERROR("Cannot read data tables\n"); free(convbuf); return CUPS_BACKEND_FAILED; } /* Do gamma conversion */ ctx->lib.M1_Gamma8to14(cpc, &input, &output); if (job->hdr.sharp_h || job->hdr.sharp_v) { /* 0 is off, 1-7 corresponds to level 0-6 */ int sharp = ((job->hdr.sharp_h > job->hdr.sharp_v) ? job->hdr.sharp_h : job->hdr.sharp_v) - 1; job->hdr.sharp_h = 0; job->hdr.sharp_v = 0; /* And do the sharpening */ if (ctx->lib.M1_CLocalEnhancer(cpc, sharp, &output)) { ERROR("CLocalEnhancer failed (out of memory?)\n"); free(convbuf); ctx->lib.M1_DestroyCPCData(cpc); return CUPS_BACKEND_RETRY_CURRENT; } } /* We're done with the CPC data */ ctx->lib.M1_DestroyCPCData(cpc); #if (__BYTE_ORDER == __BIG_ENDIAN) /* Convert data to LITTLE ENDIAN if needed */ int i; uint16_t *ptr = output.imgbuf; for (i = 0; i < output.rows * output.cols ; i ++) { ptr[i] = cpu_to_le16(i); } #endif free(job->databuf); job->databuf = convbuf; job->datalen = sizeof(struct mitsud90_plane_hdr) + input.rows * input.cols * sizeof(uint16_t) * 3; /* Deal with lamination settings */ if (job->hdr.overcoat == 3) { int pre_matte_len = job->datalen; ret = cpm1_fillmatte(job); if (ret) { mitsud90_cleanup_job(job); return ret; } job->hdr.oprate = ctx->lib.M1_CalcOpRateMatte(output.rows, output.cols, job->databuf + pre_matte_len); } else { job->hdr.oprate = ctx->lib.M1_CalcOpRateGloss(output.rows, output.cols); } } /* Bypass */ if (test_mode >= TEST_MODE_NOPRINT) return CUPS_BACKEND_OK; INFO("Waiting for printer idle...\n"); top: sent = 0; // XXX Figure out if printer is asleep, and wake it up if necessary. /* Query status, wait for idle or error out */ do { if (mitsud90_query_status(ctx, &resp)) return CUPS_BACKEND_FAILED; if (resp.code[0] != D90_ERROR_STATUS_OK) { ERROR("Printer reported error condition: %s (%02x %02x)\n", mitsud90_error_codes(resp.code), resp.code[0], resp.code[1]); return CUPS_BACKEND_STOP; } if (resp.code[1] & D90_ERROR_STATUS_OK_WARMING || resp.temp & D90_ERROR_STATUS_OK_WARMING ) { INFO("Printer warming up\n"); sleep(1); continue; } if (resp.code[1] & D90_ERROR_STATUS_OK_COOLING || resp.temp & D90_ERROR_STATUS_OK_COOLING) { INFO("Printer cooling down\n"); sleep(1); continue; } if (resp.mecha[0] != last_status[0] || resp.mecha[1] != last_status[1]) { INFO("Printer status: %s\n", mitsud90_mecha_statuses(resp.mecha)); last_status[0] = resp.mecha[0]; last_status[1] = resp.mecha[1]; } if (resp.mecha[0] == D90_MECHA_STATUS_IDLE) { break; // we don't have to wait until idle, just // until we have free buffers. Don't know how // to check this though.. XXXX } } while(1); /* Send memory check */ { struct mitsud90_memcheck mem; struct mitsud90_memcheck_resp mem_resp; int num; memcpy(&mem, &job->hdr, sizeof(mem)); mem.hdr[0] = 0x1b; mem.hdr[1] = 0x47; mem.hdr[2] = 0x44; mem.hdr[3] = 0x33; if ((ret = send_data(ctx->dev, ctx->endp_down, (uint8_t*) &mem, sizeof(mem)))) return CUPS_BACKEND_FAILED; ret = read_data(ctx->dev, ctx->endp_up, (uint8_t*)&mem_resp, sizeof(mem_resp), &num); if (ret < 0) return ret; if (num != sizeof(mem_resp)) { ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(mem_resp)); return 4; } if (mem_resp.size_bad || mem_resp.mem_bad == 0xff) { ERROR("Printer reported bad print params (%02x)\n", mem_resp.size_bad); return CUPS_BACKEND_CANCEL; } if (mem_resp.mem_bad) { ERROR("Printer buffers full, retrying!\n"); sleep(1); goto top; } } /* Send job header */ if ((ret = send_data(ctx->dev, ctx->endp_down, (uint8_t*) &job->hdr, sizeof(job->hdr)))) return CUPS_BACKEND_FAILED; /* Send Plane header */ if ((ret = send_data(ctx->dev, ctx->endp_down, job->databuf + sent, sizeof(job->hdr)))) return CUPS_BACKEND_FAILED; sent += sizeof(job->hdr); /* Send payload */ if ((ret = send_data(ctx->dev, ctx->endp_down, job->databuf + sent, job->datalen - sent))) return CUPS_BACKEND_FAILED; // sent += (job->datalen - sent); /* Send job footer */ if (job->has_footer) { if ((ret = send_data(ctx->dev, ctx->endp_down, (uint8_t*) &job->footer, sizeof(job->footer)))) return CUPS_BACKEND_FAILED; } /* Wait for completion */ do { sleep(1); if (mitsud90_query_status(ctx, &resp)) return CUPS_BACKEND_FAILED; if (resp.code[0] != D90_ERROR_STATUS_OK) { ERROR("Printer reported error condition: %s (%02x %02x)\n", mitsud90_error_codes(resp.code), resp.code[0], resp.code[1]); return CUPS_BACKEND_STOP; } if (resp.mecha[0] != last_status[0] || resp.mecha[1] != last_status[1]) { INFO("Printer status: %s\n", mitsud90_mecha_statuses(resp.mecha)); last_status[0] = resp.mecha[0]; last_status[1] = resp.mecha[1]; } /* Terminate when printing complete */ if (resp.mecha[0] == D90_MECHA_STATUS_IDLE) { break; } if (fast_return && copies <= 1) { /* Copies generated by backend? */ INFO("Fast return mode enabled.\n"); break; } } while(1); /* Clean up */ if (terminate) copies = 1; INFO("Print complete (%d copies remaining)\n", copies - 1); if (copies && --copies) { goto top; } return CUPS_BACKEND_OK; } static int mitsud90_query_job(struct mitsud90_ctx *ctx, uint16_t jobid, struct mitsud90_job_resp *resp) { struct mitsud90_job_query req; int ret, num; req.hdr[0] = 0x1b; req.hdr[1] = 0x47; req.hdr[2] = 0x44; req.hdr[3] = 0x31; req.jobid = cpu_to_be16(jobid); if ((ret = send_data(ctx->dev, ctx->endp_down, (uint8_t*) &req, sizeof(req)))) return ret; memset(resp, 0, sizeof(*resp)); ret = read_data(ctx->dev, ctx->endp_up, (uint8_t*) resp, sizeof(*resp), &num); if (ret < 0) return ret; if (num != sizeof(*resp)) { ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(*resp)); return 4; } return CUPS_BACKEND_OK; } static int mitsud90_get_jobstatus(struct mitsud90_ctx *ctx, uint16_t jobid) { struct mitsud90_job_resp resp; if (mitsud90_query_job(ctx, jobid, &resp)) return CUPS_BACKEND_FAILED; INFO("Job Status: %04x = %02x/%02x/%04x\n", jobid, resp.unk1, resp.unk2, be16_to_cpu(resp.unk3)); return CUPS_BACKEND_OK; } static int mitsud90_get_media(struct mitsud90_ctx *ctx) { struct mitsud90_media_resp resp; if (mitsud90_query_media(ctx, &resp)) return CUPS_BACKEND_FAILED; INFO("Media Type: %s (%02x/%02x)\n", mitsu_media_types(ctx->type, resp.media.brand, resp.media.type), resp.media.brand, resp.media.type); INFO("Prints Remaining: %03d/%03d\n", be16_to_cpu(resp.media.remain), be16_to_cpu(resp.media.capacity)); return CUPS_BACKEND_OK; } static int mitsud90_get_status(struct mitsud90_ctx *ctx) { struct mitsud90_status_resp resp; if (mitsud90_query_status(ctx, &resp)) return CUPS_BACKEND_FAILED; mitsud90_dump_status(&resp); return CUPS_BACKEND_OK; } static int mitsud90_get_info(struct mitsud90_ctx *ctx) { uint8_t cmdbuf[26]; int ret, num; struct mitsud90_info_resp resp; cmdbuf[0] = 0x1b; cmdbuf[1] = 0x47; cmdbuf[2] = 0x44; cmdbuf[3] = 0x30; cmdbuf[4] = 0; cmdbuf[5] = 0; cmdbuf[6] = 19; /* Number of commands */ cmdbuf[7] = COM_STATUS_TYPE_MODEL; cmdbuf[8] = COM_STATUS_TYPE_x02; cmdbuf[9] = COM_STATUS_TYPE_FW_0b; cmdbuf[10] = COM_STATUS_TYPE_FW_MA; cmdbuf[11] = COM_STATUS_TYPE_FW_F; cmdbuf[12] = COM_STATUS_TYPE_FW_T; cmdbuf[13] = COM_STATUS_TYPE_FW_0f; cmdbuf[14] = COM_STATUS_TYPE_FW_11; cmdbuf[15] = COM_STATUS_TYPE_FW_ME; cmdbuf[16] = COM_STATUS_TYPE_x1e; cmdbuf[17] = COM_STATUS_TYPE_x22; cmdbuf[18] = COM_STATUS_TYPE_x28; cmdbuf[19] = COM_STATUS_TYPE_x29; cmdbuf[20] = COM_STATUS_TYPE_x2b; cmdbuf[21] = COM_STATUS_TYPE_x2c; cmdbuf[22] = COM_STATUS_TYPE_x65; cmdbuf[23] = D90_STATUS_TYPE_ISEREN; cmdbuf[24] = COM_STATUS_TYPE_x83; cmdbuf[25] = D90_STATUS_TYPE_x84; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, sizeof(cmdbuf)))) return ret; memset(&resp, 0, sizeof(resp)); ret = read_data(ctx->dev, ctx->endp_up, (uint8_t*) &resp, sizeof(resp), &num); if (ret < 0) return ret; if (num != sizeof(resp)) { ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(resp)); return 4; } /* start dumping output */ memset(cmdbuf, 0, sizeof(cmdbuf)); memcpy(cmdbuf, resp.model, sizeof(resp.model)); INFO("Model: %s\n", (char*)cmdbuf); INFO("Serial: %s\n", ctx->serno); for (num = 0; num < 7 ; num++) { memset(cmdbuf, 0, sizeof(cmdbuf)); memcpy(cmdbuf, resp.fw_vers[num].version, sizeof(resp.fw_vers[num].version)); INFO("FW Component %02d: %s (%04x)\n", num, cmdbuf, be16_to_cpu(resp.fw_vers[num].csum)); } INFO("TYPE_02: %02x\n", resp.x02); INFO("TYPE_1e: %02x\n", resp.x1e); INFO("TYPE_22: %02x %02x\n", resp.x22[0], resp.x22[1]); INFO("TYPE_28: %04x\n", be16_to_cpu(resp.x28)); INFO("TYPE_29: %02x %02x %02x %02x %02x %02x %02x %02x\n", resp.x29[0], resp.x29[1], resp.x29[2], resp.x29[3], resp.x29[4], resp.x29[5], resp.x29[6], resp.x29[7]); INFO("TYPE_2b: %02x %02x\n", resp.x2b[0], resp.x2b[1]); INFO("TYPE_2c: %02x %02x\n", resp.x2c[0], resp.x2c[1]); INFO("TYPE_65:"); for (num = 0; num < 50 ; num++) { DEBUG2(" %02x", resp.x65[num]); } DEBUG2("\n"); INFO("iSerial: %s\n", resp.iserial ? "Disabled" : "Enabled"); INFO("TYPE_83: %02x\n", resp.x83); INFO("TYPE_84: %02x\n", resp.x84); // XXX what about resume, wait time, "cut limit", sleep time ? return CUPS_BACKEND_OK; } static int mitsum1_get_info(struct mitsud90_ctx *ctx) { uint8_t cmdbuf[25]; int ret, num; struct mitsum1_info_resp resp; cmdbuf[0] = 0x1b; cmdbuf[1] = 0x47; cmdbuf[2] = 0x44; cmdbuf[3] = 0x30; cmdbuf[4] = 0; cmdbuf[5] = 0; cmdbuf[6] = 18; /* Number of commands */ cmdbuf[7] = COM_STATUS_TYPE_MODEL; cmdbuf[8] = COM_STATUS_TYPE_x02; cmdbuf[9] = CM1_STATUS_TYPE_FW_0a; cmdbuf[10] = COM_STATUS_TYPE_FW_0b; cmdbuf[11] = COM_STATUS_TYPE_FW_MA; cmdbuf[12] = COM_STATUS_TYPE_FW_F; cmdbuf[13] = COM_STATUS_TYPE_FW_T; cmdbuf[14] = COM_STATUS_TYPE_FW_0f; cmdbuf[15] = COM_STATUS_TYPE_FW_11; cmdbuf[16] = COM_STATUS_TYPE_FW_ME; cmdbuf[17] = COM_STATUS_TYPE_x1e; cmdbuf[18] = COM_STATUS_TYPE_x22; cmdbuf[19] = COM_STATUS_TYPE_x28; cmdbuf[20] = COM_STATUS_TYPE_x29; cmdbuf[21] = COM_STATUS_TYPE_x2b; cmdbuf[22] = COM_STATUS_TYPE_x2c; cmdbuf[23] = COM_STATUS_TYPE_x65; cmdbuf[24] = COM_STATUS_TYPE_x83; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, sizeof(cmdbuf)))) return ret; memset(&resp, 0, sizeof(resp)); ret = read_data(ctx->dev, ctx->endp_up, (uint8_t*) &resp, sizeof(resp), &num); if (ret < 0) return ret; if (num != sizeof(resp)) { ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(resp)); return 4; } /* start dumping output */ memset(cmdbuf, 0, sizeof(cmdbuf)); memcpy(cmdbuf, resp.model, sizeof(resp.model)); INFO("Model: %s\n", (char*)cmdbuf); INFO("Serial: %s\n", ctx->serno); for (num = 0; num < 8 ; num++) { memset(cmdbuf, 0, sizeof(cmdbuf)); memcpy(cmdbuf, resp.fw_vers[num].version, sizeof(resp.fw_vers[num].version)); INFO("FW Component %02d: %s (%04x)\n", num, cmdbuf, be16_to_cpu(resp.fw_vers[num].csum)); } INFO("TYPE_02: %02x\n", resp.x02); INFO("TYPE_1e: %02x\n", resp.x1e); INFO("TYPE_22: %02x %02x\n", resp.x22[0], resp.x22[1]); INFO("TYPE_28: %04x\n", be16_to_cpu(resp.x28)); INFO("TYPE_29: %02x %02x %02x %02x %02x %02x %02x %02x\n", resp.x29[0], resp.x29[1], resp.x29[2], resp.x29[3], resp.x29[4], resp.x29[5], resp.x29[6], resp.x29[7]); INFO("TYPE_2b: %02x %02x\n", resp.x2b[0], resp.x2b[1]); INFO("TYPE_2c: %02x %02x\n", resp.x2c[0], resp.x2c[1]); INFO("TYPE_65:"); for (num = 0; num < 50 ; num++) { DEBUG2(" %02x", resp.x65[num]); } DEBUG2("\n"); INFO("TYPE_83: %02x\n", resp.x83); // XXX what about resume, wait time, "cut limit", sleep time ? return CUPS_BACKEND_OK; } static int mitsud90_dumpall(struct mitsud90_ctx *ctx) { int i; uint8_t cmdbuf[8]; uint8_t buf[256]; cmdbuf[0] = 0x1b; cmdbuf[1] = 0x47; cmdbuf[2] = 0x44; cmdbuf[3] = 0x30; cmdbuf[4] = 0; cmdbuf[5] = 0; cmdbuf[6] = 0x01; /* Number of commands */ for (i = 0 ; i < 256 ; i++) { int num, ret; cmdbuf[7] = i; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, sizeof(cmdbuf)))) return ret; memset(buf, 0, sizeof(buf)); ret = read_data(ctx->dev, ctx->endp_up, buf, sizeof(buf), &num); if (ret < 0) continue; if (num > 4) { DEBUG("TYPE %02x LEN: %d\n", i, num - 4); DEBUG("<--"); for (ret = 4; ret < num ; ret ++) { DEBUG2(" %02x", buf[ret]); } DEBUG2("\n"); } } return CUPS_BACKEND_OK; } static int mitsud90_query_serno(struct libusb_device_handle *dev, uint8_t endp_up, uint8_t endp_down, int iface, char *buf, int buf_len) { struct mitsud90_ctx ctx = { .dev = dev, .endp_up = endp_up, .endp_down = endp_down }; int ret; UNUSED(iface); UNUSED(buf_len); ret = mitsud90_get_serno(&ctx); /* Copy it */ memcpy(buf, ctx.serno, sizeof(ctx.serno)); return ret; } static int mitsud90_set_iserial(struct mitsud90_ctx *ctx, uint8_t enabled) { uint8_t cmdbuf[23]; int ret, num; enabled = (enabled) ? 0: 0x80; /* Send Parameter.. */ cmdbuf[0] = 0x1b; cmdbuf[1] = 0x31; cmdbuf[2] = 0x36; cmdbuf[3] = 0x30; cmdbuf[4] = 0x41; cmdbuf[5] = 0xbe; cmdbuf[6] = 0x00; cmdbuf[7] = 0x00; cmdbuf[8] = 0x00; cmdbuf[9] = 0x01; cmdbuf[10] = 0x00; cmdbuf[11] = 0x00; cmdbuf[12] = 0x00; cmdbuf[13] = 0x11; cmdbuf[14] = 0xff; cmdbuf[15] = 0xff; cmdbuf[16] = 0xff; cmdbuf[17] = 0xfe; cmdbuf[18] = 0xff; cmdbuf[19] = 0xff; cmdbuf[20] = 0xff; cmdbuf[21] = 0xfe; cmdbuf[22] = enabled; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, sizeof(cmdbuf)))) return ret; ret = read_data(ctx->dev, ctx->endp_up, cmdbuf, sizeof(cmdbuf), &num); return ret; } static int mitsud90_set_sleeptime(struct mitsud90_ctx *ctx, uint16_t time) { uint8_t cmdbuf[24]; int ret; /* 255 minutes max, according to RE work */ if (time > 255) time = 255; /* Send Parameter.. */ cmdbuf[0] = 0x1b; cmdbuf[1] = 0x31; cmdbuf[2] = 0x36; cmdbuf[3] = 0x30; cmdbuf[4] = 0x41; cmdbuf[5] = 0xbe; cmdbuf[6] = 0x00; cmdbuf[7] = 0x00; cmdbuf[8] = 0x00; cmdbuf[9] = 0x02; cmdbuf[10] = 0x00; cmdbuf[11] = 0x00; cmdbuf[12] = 0x05; cmdbuf[13] = 0x02; cmdbuf[14] = 0xff; cmdbuf[15] = 0xff; cmdbuf[16] = 0xff; cmdbuf[17] = 0xfd; cmdbuf[18] = 0xff; cmdbuf[19] = 0xff; cmdbuf[20] = 0xfa; cmdbuf[21] = 0xff; cmdbuf[22] = (time >> 8) & 0xff; cmdbuf[23] = time & 0xff; if ((ret = send_data(ctx->dev, ctx->endp_down, cmdbuf, 4))) return ret; /* No response */ return CUPS_BACKEND_OK; } static void mitsud90_cmdline(void) { DEBUG("\t\t[ -i ] # Query printer info\n"); DEBUG("\t\t[ -j jobid ] # Query job status\n"); DEBUG("\t\t[ -k time ] # Set sleep time in minutes\n"); DEBUG("\t\t[ -m ] # Query printer media\n"); DEBUG("\t\t[ -s ] # Query printer status\n"); DEBUG("\t\t[ -x 0|1 ] # Enable/disable iSerial reporting\n"); // DEBUG("\t\t[ -Z ] # Dump all parameters\n"); } static int mitsud90_cmdline_arg(void *vctx, int argc, char **argv) { struct mitsud90_ctx *ctx = vctx; int i, j = 0; if (!ctx) return -1; while ((i = getopt(argc, argv, GETOPT_LIST_GLOBAL "ij:k:msx:Z")) >= 0) { switch(i) { GETOPT_PROCESS_GLOBAL case 'i': if (ctx->type == P_MITSU_D90) j = mitsud90_get_info(ctx); else j = mitsum1_get_info(ctx); break; case 'j': j = mitsud90_get_jobstatus(ctx, atoi(optarg)); break; case 'k': j = mitsud90_set_sleeptime(ctx, atoi(optarg)); break; case 'm': j = mitsud90_get_media(ctx); break; case 's': j = mitsud90_get_status(ctx); break; case 'x': if (ctx->type == P_MITSU_D90) j = mitsud90_set_iserial(ctx, atoi(optarg)); break; case 'Z': j = mitsud90_dumpall(ctx); break; default: break; /* Ignore completely */ } if (j) return j; } return CUPS_BACKEND_OK; } static int mitsud90_query_markers(void *vctx, struct marker **markers, int *count) { struct mitsud90_ctx *ctx = vctx; struct mitsud90_media_resp resp; if (markers) *markers = &ctx->marker; if (count) *count = 1; if (mitsud90_query_media(ctx, &resp)) return CUPS_BACKEND_FAILED; ctx->marker.levelnow = be16_to_cpu(resp.media.remain); return CUPS_BACKEND_OK; } static int mitsud90_query_stats(void *vctx, struct printerstats *stats) { struct mitsud90_ctx *ctx = vctx; struct mitsud90_status_resp resp; if (mitsud90_query_markers(ctx, NULL, NULL)) return CUPS_BACKEND_FAILED; if (mitsud90_query_status(ctx, &resp)) return CUPS_BACKEND_FAILED; stats->mfg = "Mitsubishi"; switch (ctx->type) { case P_MITSU_D90: stats->model = "CP-D90 family"; break; case P_MITSU_M1: stats->model = "CP-M1 family"; break; default: stats->model = "Unknown!"; break; } stats->serial = ctx->serno; // stats->fwver = ctx->fwver; // XXX use resp.fw_vers for 0xc/FW_MA stats->decks = 1; stats->name[0] = "Roll"; if (resp.code[0] != D90_ERROR_STATUS_OK) stats->status[0] = strdup(mitsud90_error_codes(resp.code)); else if (resp.code[1] & D90_ERROR_STATUS_OK_WARMING || resp.temp & D90_ERROR_STATUS_OK_WARMING) stats->status[0] = strdup("Warming up"); else if (resp.code[1] & D90_ERROR_STATUS_OK_COOLING || resp.temp & D90_ERROR_STATUS_OK_COOLING) stats->status[0] = strdup("Cooling down"); else stats->status[0] = strdup(mitsud90_mecha_statuses(resp.mecha)); stats->mediatype[0] = ctx->marker.name; stats->levelmax[0] = ctx->marker.levelmax; stats->levelnow[0] = ctx->marker.levelnow; // stats->cnt_life[0] = ??? // XXX Don't know about any counters yet. return CUPS_BACKEND_OK; } static const char *mitsud90_prefixes[] = { "mitsud90", /* Family Name */ NULL }; /* Exported */ struct dyesub_backend mitsud90_backend = { .name = "Mitsubishi CP-D90/CP-M1", .version = "0.28" " (lib " LIBMITSU_VER ")", .uri_prefixes = mitsud90_prefixes, .cmdline_arg = mitsud90_cmdline_arg, .cmdline_usage = mitsud90_cmdline, .init = mitsud90_init, .attach = mitsud90_attach, .teardown = mitsud90_teardown, .cleanup_job = mitsud90_cleanup_job, .read_parse = mitsud90_read_parse, .main_loop = mitsud90_main_loop, .query_serno = mitsud90_query_serno, .query_markers = mitsud90_query_markers, .query_stats = mitsud90_query_stats, .devices = { { USB_VID_MITSU, USB_PID_MITSU_D90, P_MITSU_D90, NULL, "mitsubishi-d90dw"}, { USB_VID_MITSU, USB_PID_MITSU_CPM1, P_MITSU_M1, NULL, "mitsubishi-cpm1"}, { USB_VID_MITSU, USB_PID_MITSU_CPM1, P_MITSU_M1, NULL, "mitsubishi-cpm15"}, // Duplicate for the M15 { 0, 0, 0, NULL, NULL} } }; /* To-Do: * consolidate M1 vs D90 info query/dump more efficiently * job control (job id, active job, buffer status, etc) * any sort of counters * figure out "margin" parameter on the cut list * sleep and waking up * cut limit? * put FW version into stats structure */ /* Mitsubishi CP-D90DW data format All multi-byte values are BIG endian [[HEADER 1]] 1b 53 50 30 00 33 XX XX YY YY TT 00 00 01 MM NN XX XX == COLS, YY XX ROWS (BE) ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 00 00 00 00 NN == num of cuts, ?? see below 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 MM == 0 for no margin cut, 1 for margin cut QQ RR SS HH VV 00 00 00 00 00 ZZ 00 03 II 09 7c QQ == 02 matte (D90) or 03 (M1), 00 glossy, 09 4c 00 00 02 58 00 0c 00 06 00 00 00 00 00 00 RR == 00 auto, (D90: 03 == fine, 02 == superfine), (M1: 05 == Fast) Z0 Z1 Z2 00 00 00 00 00 00 00 00 00 00 00 00 00 SS == 00 colorcorr, 01 == none (always 01 on M1) HH/VV sharpening for Horiz/Vert, 0-8, 0 is off, 4 is normal (always 00 on M1) TT is waittime (100 max, always 100 on D90) ZZ is 0x02 on M1, D90 see below Z0 is 0x01 (M1 windows) (00 Linux and d90 UNK!) Z1 is RGB Rate (M1) Z2 is OP Rate (M1) [pad to 512b] normal == rows 00 00 00 00 00 00 00 00 00 4x6div2 == 1226 01 02 65 01 00 00 00 00 00 8x6div2 == 2488 01 04 be 00 00 00 00 00 00 guesses based on SDK docs: 9x6div2 == 2728 01 05 36 01 00 00 00 00 00 00 00 00 00 9x6div3 == 2724 02 03 90 01 00 07 14 00 00 00 00 00 00 9x6div4 == 2628 03 02 97 01 00 05 22 00 00 07 ad 00 00 from [ZZ 00 03 03] onwards, only shows in 8x20" PANORAMA prints. Assume 2" overlap. ZZ == 00 (normal) or 01 (panorama) II == 01 02 03 (which panel # in panorama!) [02 58] == 600, aka 2" * 300dpi? [09 4c] == 2380 (48 less than 8 size? (trim length on ends?) [09 7c] == 2428 (ie 8" print) (6x20 == 1852x6036) (6x14 == 1852x4232) 3*8" panels == 2428*3=7284. -6036 = 1248. /2 = 624 (0x270) [[DATA PLANE HEADER]] 1b 5a 54 01 00 09 00 00 00 00 CC CC RR RR 00 00 00 00 00 00 LC LC LR LR ... [pad to 512b] CC CC cols (BE) RR RR rows (BE) LC LC lamination columns (BE, M1 only, same as cols) LR LR lamination rows (BE, M1 only, rows + 12d ) D90 family: data is *RGB* packed, @ 8bpp. No padding to 512b! M1 family: data is *RGB* packed, @16bpp, LITTLE ENDIAN. No padding to 512b! optional matte data is 8bpp, follows immediately. [[FOOTER]] 1b 42 51 31 00 TT ## TT == secs to wait for second print, 0xff also valid for something? **************************************************** Comms Protocol for D90 & CP-M1 [[ ERROR STATUS ]] -> 1b 47 44 30 00 00 01 16 <- e4 47 44 30 00 00 00 00 00 00 00 00 00 00 00 [Normal/OK] <- e4 47 44 30 XX 00 00 00 00 00 00 00 00 3f 37 [Error condition] XX == 29 (printer open) 28 (cut bin missing) <- e4 47 44 30 21 90 00 00 01 00 00 00 00 3f 37 No ribbon [[ MEDIA STATUS ]] -> 1b 47 44 30 00 00 01 2a <- e4 47 44 30 ff 0f 50 00 01 ae 01 9b 01 00 [Normal/OK] <- e4 47 44 30 ff ff ff ff ff ff ff ff ff ff [Error] [[ MECHA STATUS ]] -> 1b 47 44 30 00 00 01 17 <- e4 47 44 30 SS SS [[ TEMPERATURE QUERY ]] -> 1b 47 44 30 00 00 01 1f <- e4 47 44 30 HH [[ UNKNOWN QUERY ]] -> 1b 47 44 30 00 00 01 28 <- e4 47 44 30 XX XX Unknown, seems to increment. Lifetime counter? [[ JOB STATUS QUERY ?? ]] -> 1b 47 44 31 00 00 JJ JJ Jobid? <- e4 47 44 31 XX YY ZZ ZZ No idea... maybe remaining prints? [[ COMBINED STATUS QUERIES ]] -> 1b 47 44 30 00 00 04 16 17 1f 2a <- e4 47 44 30 MM NN 00 00 ZZ 00 00 00 00 QQ QQ [id 16, total 11] SS SS [id 17, total 2] HH [id 1f, total 1] VV TT WW 00 XX XX YY YY 01 00 [id 2a, total 10] WW == 0x50 or 0x00 (seen, no idea what it means) VV == Media vendor (0xff etc) TT == Media type, 0x02/0x0f etc (see mitsu_media_types!) XX XX == Media capacity, BE YY YY == Media remain, BE QQ QQ == 00 00 normal, 3f 37 error MM NN == MM major err (00 if no error) NN minor error. ZZ == 01 seen for _some_ errors. SS SS == Mecha Status (00 == ready, 50 == printing, 80+10 == feedandcut, 80 == initializing? HH == Temperature state. 00 is OK, 0x40 is low, 0x80 is hot. II II == ?? JJ JJ == ?? [[ WAKE UP PRINTER ]] -> 1b 45 57 55 [[ GET iSERIAL Setting ]] -> 1b 61 36 36 41 be 00 00 00 01 00 00 00 11 ff ff ff fe ff ff ff ee <- e4 61 36 36 41 be 00 00 00 01 00 00 00 11 ff ff ff fe ff ff ff ee XX <- XX is 0x80 or 0x00. (0x80) ISERIAL OFF [[ GET SERIAL NUMBER ]] -> 1b 61 36 36 41 be 00 00 00 06 00 00 00 30 ff ff ff f9 ff ff ff cf <- e4 61 36 36 41 00 00 00 00 06 00 00 00 30 ff ff ff f9 ff ff ff cf XX XX XX XX XX XX <- XX is 6-char ASCII serial number! [[ GET CUT? ]] -> 1b 61 36 36 45 ba 00 00 00 01 00 00 05 07 ff ff ff fe ff ff fa f8 -> e4 61 36 36 45 ba 00 00 00 01 00 00 05 07 ff ff ff fe ff ff fa f8 XX <- XX is 0x80 or 0x00 (0x00) CUT ON? [[ GET WAIT TIME ]] -> 1b 61 36 36 45 00 00 00 00 01 00 00 05 05 ff ff ff fe ff ff fa fb -> 1b 61 36 36 45 00 00 00 00 01 00 00 05 05 ff ff ff fe ff ff fa fb XX <- XX is time in seconds. [[ GET RESUME? ]] -> 1b 61 36 36 45 ba 00 00 00 01 00 00 05 06 ff ff ff fe ff ff fa f9 -> e4 61 36 36 45 ba 00 00 00 01 00 00 05 06 ff ff ff fe ff ff fa f9 XX <- XX is 0x80 or 0x00 (0x80) (OFF) [[ GET SLEEP TIME! ]] -> 1b 61 36 36 45 ba 00 00 00 02 00 00 05 02 ff ff ff fd ff ff fa fd <- e4 61 36 36 45 00 00 00 00 02 00 00 05 02 ff ff ff fd ff ff fa fd XX 00 <- XX, sleep time in minutes. [[ SET SLEEP TIME! ]] -> 1b 61 36 30 45 ba 00 00 00 02 00 00 05 02 ff ff ff fd ff ff fa fd XX 00 <- XX, sleep time in minutes. [[ SET iSERIAL ]] -> 1b 61 36 30 41 be 00 00 00 01 00 00 00 11 ff ff ff fe ff ff ff ee XX <- XX 0x80 OFF, 0x00 ON. [[ SANITY CHECK PRINT ARGUMENTS / MEM CHECK ]] -> 1b 47 44 33 00 33 07 3c 04 ca 64 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 04 00 00 00 00 00 00 00 00 00 00 00 [[ pad to 512 ]] ... 07 3c onwards is the same as main payload header. <- e4 47 44 43 XX YY ... possibly the same as the D70's "memorystatus" XX == 00 size ok, 01 bad size, ff out of range YY == 00 memory ok, 01 memory full, 02 driver setting, ff out of range [[ SEND OVER HDRs and DATA ]] ... Print arguments: -> 1b 53 50 30 00 33 07 3c 04 ca 64 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 04 00 00 00 00 00 00 00 00 00 00 00 [[ pad to 512 ]] ... Data transfer. Plane header: -> 1b 5a 54 01 00 09 00 00 00 00 07 3c 04 ca 00 00 [[ pad to 512 ]] -> [[print data]] [[ padded? ]] -> [[print data]] -> 1b 42 51 31 00 ZZ ... Footer. ZZ == Seconds to wait for follow-up print (0x05) ALSO SEEN (in SDK) 1b 42 61 32 00 00 [[ UNKNOWN (seen in SDK) ]] 1b 44 43 41 4e 43 45 4c 00 00 00 00 : \ESC D CANCEL [[ UNKNOWON (seen in SDK) ]] 1b 42 51 32 00 00 [ Footer of some sort ? ] request x65 examples: ac 80 00 01 bb b8 fe 48 05 13 5d 9c 00 33 00 00 00 00 00 00 00 00 00 00 00 00 02 39 00 00 00 00 03 13 00 02 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 aa 79 00 01 bb b7 fe 47 05 13 5d 9c 01 2f 00 68 00 00 00 00 00 00 00 00 00 00 02 08 00 00 00 00 03 14 00 02 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 [ power cycle, new capture ] a3 5d 00 01 ba ba fe 43 04 13 5d 9c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 0c 00 00 00 00 03 0f 00 03 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 a3 5d 00 01 ba ba fe 42 04 13 5d 9c 01 08 00 87 00 00 00 00 00 00 00 00 00 00 01 e5 00 00 00 00 03 0f 00 03 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 a2 5d 00 01 ba ba fe 42 06 13 5d 9c 01 08 00 87 00 00 00 00 00 00 00 00 00 00 01 d1 00 00 00 00 03 0f 00 03 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 [ power cycle ] a2 5c 00 01 ba ba fe 42 06 13 5d 9c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 e0 00 00 00 00 03 0f 00 03 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 a2 5d 00 01 ba ba fe 41 04 13 5d 9c 01 08 00 89 00 00 00 00 00 00 00 00 00 00 01 c9 00 00 00 00 03 0f 00 03 10 40 00 00 00 00 00 00 05 80 00 3a 00 00 [ cp-m1 ] 00 00 01 f2 00 07 00 00 00 0f 00 a7 02 9f 03 91 00 00 00 00 00 00 02 36 00 07 03 ff 02 07 03 ff 03 4c 00 01 10 00 00 00 00 00 00 00 05 80 00 24 04 00 */