selphy_print/backend_mitsu70x.c

585 lines
14 KiB
C

/*
* Mitsubishi CP-D70/D707 Photo Printer CUPS backend -- libusb-1.0 version
*
* (c) 2013-2014 Solomon Peachy <pizza@shaftnet.org>
*
* The latest version of this program can be found at:
*
* http://git.shaftnet.org/cgit/selphy_print.git
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* [http://www.gnu.org/licenses/gpl-3.0.html]
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
#include "backend_common.h"
#define USB_VID_MITSU 0x06D3
#define USB_PID_MITSU_D70X 0x3B30
#define USB_PID_MITSU_K60 0x3B31
/* Private data stucture */
struct mitsu70x_ctx {
struct libusb_device_handle *dev;
uint8_t endp_up;
uint8_t endp_down;
uint8_t *databuf;
int datalen;
};
/* Program states */
enum {
S_IDLE = 0,
S_SENT_ATTN,
S_SENT_HDR,
S_SENT_DATA,
S_FINISHED,
};
#define READBACK_LEN 256
static void *mitsu70x_init(void)
{
struct mitsu70x_ctx *ctx = malloc(sizeof(struct mitsu70x_ctx));
if (!ctx)
return NULL;
memset(ctx, 0, sizeof(struct mitsu70x_ctx));
return ctx;
}
static void mitsu70x_attach(void *vctx, struct libusb_device_handle *dev,
uint8_t endp_up, uint8_t endp_down, uint8_t jobid)
{
struct mitsu70x_ctx *ctx = vctx;
UNUSED(jobid);
ctx->dev = dev;
ctx->endp_up = endp_up;
ctx->endp_down = endp_down;
}
static void mitsu70x_teardown(void *vctx) {
struct mitsu70x_ctx *ctx = vctx;
if (!ctx)
return;
if (ctx->databuf)
free(ctx->databuf);
free(ctx);
}
struct mitsu70x_hdr {
uint32_t cmd;
uint8_t zero0[12];
uint16_t cols;
uint16_t rows;
uint16_t lamcols;
uint16_t lamrows;
uint8_t superfine;
uint8_t zero1[7];
uint8_t deck;
uint8_t zero2[7];
uint8_t zero3;
uint8_t laminate;
uint8_t zero4[6];
uint8_t zero5[512-48];
};
static int mitsu70x_read_parse(void *vctx, int data_fd) {
struct mitsu70x_ctx *ctx = vctx;
uint8_t hdr[1024];
int i, remain;
struct mitsu70x_hdr *mhdr = (struct mitsu70x_hdr*)(hdr + 512);
if (!ctx)
return CUPS_BACKEND_FAILED;
if (ctx->databuf) {
free(ctx->databuf);
ctx->databuf = NULL;
}
/* Read in initial header */
remain = sizeof(hdr);
while (remain > 0) {
i = read(data_fd, hdr + sizeof(hdr) - remain, remain);
if (i == 0)
return CUPS_BACKEND_CANCEL;
if (i < 0)
return CUPS_BACKEND_CANCEL;
remain -= i;
}
/* Sanity check */
if (hdr[0] != 0x1b ||
hdr[1] != 0x45 ||
hdr[2] != 0x57 ||
hdr[3] != 0x55) {
ERROR("Unrecognized data format!\n");
return CUPS_BACKEND_CANCEL;
}
/* Work out printjob size */
remain = be16_to_cpu(mhdr->rows) * be16_to_cpu(mhdr->cols) * 2;
remain = (remain + 511) / 512 * 512; /* Round to nearest 512 bytes. */
remain *= 3; /* One for each plane */
if (mhdr->laminate) {
i = be16_to_cpu(mhdr->lamrows) * be16_to_cpu(mhdr->lamcols) * 2;
i = (i + 511) / 512 * 512; /* Round to nearest 512 bytes. */
remain += i;
}
ctx->databuf = malloc(sizeof(hdr) + remain);
if (!ctx->databuf) {
ERROR("Memory allocation failure!\n");
return CUPS_BACKEND_FAILED;
}
memcpy(ctx->databuf, &hdr, sizeof(hdr));
ctx->datalen += sizeof(hdr);
/* Read in the spool data */
while(remain) {
i = read(data_fd, ctx->databuf + ctx->datalen, remain);
if (i == 0)
return CUPS_BACKEND_CANCEL;
if (i < 0)
return CUPS_BACKEND_CANCEL;
ctx->datalen += i;
remain -= i;
}
return CUPS_BACKEND_OK;
}
#define CMDBUF_LEN 512
#define READBACK_LEN 256
static int mitsu70x_main_loop(void *vctx, int copies) {
struct mitsu70x_ctx *ctx = vctx;
uint8_t rdbuf[READBACK_LEN];
uint8_t rdbuf2[READBACK_LEN];
uint8_t cmdbuf[CMDBUF_LEN];
int last_state = -1, state = S_IDLE;
int num, ret;
int pending = 0;
if (!ctx)
return CUPS_BACKEND_FAILED;
top:
if (state != last_state) {
if (dyesub_debug)
DEBUG("last_state %d new %d\n", last_state, state);
}
if (pending)
goto skip_query;
/* Send Status Query */
memset(cmdbuf, 0, CMDBUF_LEN);
cmdbuf[0] = 0x1b;
cmdbuf[1] = 0x56;
cmdbuf[2] = 0x31;
cmdbuf[3] = 0x30;
cmdbuf[4] = 0x00;
cmdbuf[5] = 0x00;
if ((ret = send_data(ctx->dev, ctx->endp_down,
cmdbuf, 6)))
return CUPS_BACKEND_FAILED;
/* Send Status Query */
memset(cmdbuf, 0, CMDBUF_LEN);
cmdbuf[0] = 0x1b;
cmdbuf[1] = 0x56;
cmdbuf[2] = 0x31;
cmdbuf[3] = 0x30;
skip_query:
/* Read in the printer status */
ret = read_data(ctx->dev, ctx->endp_up,
rdbuf, READBACK_LEN, &num);
if (ret < 0)
return CUPS_BACKEND_FAILED;
if (num != 26) {
ERROR("Short Read! (%d/%d)\n", num, 26);
return CUPS_BACKEND_FAILED;
}
if (dyesub_debug) {
unsigned int i;
DEBUG("Printer Status Dump: ");
for (i = 0 ; i < 26 ; i++) {
DEBUG2("%02x ", rdbuf[i]);
}
DEBUG2("\n");
}
if (memcmp(rdbuf, rdbuf2, READBACK_LEN)) {
memcpy(rdbuf2, rdbuf, READBACK_LEN);
} else if (state == last_state) {
sleep(1);
}
last_state = state;
fflush(stderr);
pending = 0;
switch (state) {
case S_IDLE:
INFO("Waiting for printer idle\n");
if (rdbuf[7] != 0x00 ||
rdbuf[8] != 0x00 ||
rdbuf[9] != 0x00) {
break;
}
INFO("Sending attention sequence\n");
if ((ret = send_data(ctx->dev, ctx->endp_down,
ctx->databuf, 512)))
return CUPS_BACKEND_FAILED;
state = S_SENT_ATTN;
case S_SENT_ATTN:
INFO("Sending header sequence\n");
if ((ret = send_data(ctx->dev, ctx->endp_down,
ctx->databuf + 512, 512)))
return CUPS_BACKEND_FAILED;
state = S_SENT_HDR;
break;
case S_SENT_HDR:
INFO("Sending data\n");
if ((ret = send_data(ctx->dev, ctx->endp_down,
ctx->databuf + 1024, ctx->datalen - 1024)))
return CUPS_BACKEND_FAILED;
state = S_SENT_DATA;
break;
case S_SENT_DATA:
INFO("Waiting for printer to acknowledge completion\n");
state = S_FINISHED;
break;
default:
break;
};
if (state != S_FINISHED)
goto top;
/* Clean up */
if (terminate)
copies = 1;
INFO("Print complete (%d copies remaining)\n", copies - 1);
if (copies && --copies) {
state = S_IDLE;
goto top;
}
return CUPS_BACKEND_OK;
}
struct mitsu70x_status_deck {
uint8_t unk[64];
// unk[0] 0x80 for NOT PRESENT, 0x00 for present.
// unk[7-8] 0x01ff or 0x0200? Changes; maybe status?
// unk[22-23] prints remaining, 16-bit BE
};
struct mitsu70x_status_resp {
uint8_t unk[128];
struct mitsu70x_status_deck lower;
struct mitsu70x_status_deck upper;
};
static int mitsu70x_get_status(struct mitsu70x_ctx *ctx)
{
uint8_t cmdbuf[CMDBUF_LEN];
struct mitsu70x_status_resp resp;
int num, ret;
/* Send Printer Query */
memset(cmdbuf, 0, CMDBUF_LEN);
cmdbuf[0] = 0x1b;
cmdbuf[1] = 0x56;
cmdbuf[2] = 0x32;
cmdbuf[3] = 0x30;
if ((ret = send_data(ctx->dev, ctx->endp_down,
cmdbuf, 4)))
return ret;
memset(&resp, 0, sizeof(resp));
ret = read_data(ctx->dev, ctx->endp_up,
(uint8_t*) &resp, sizeof(resp), &num);
if (ret < 0)
return ret;
if (num != sizeof(resp)) {
ERROR("Short Read! (%d/%d)\n", num, (int)sizeof(resp));
return 4;
}
if (dyesub_debug) {
unsigned int i;
DEBUG("Status Dump:\n");
for (i = 0 ; i < sizeof(resp.unk) ; i++) {
DEBUG2("%02x ", resp.unk[i]);
}
DEBUG2("\n");
DEBUG("Lower Deck:\n");
for (i = 0 ; i < sizeof(resp.lower.unk) ; i++) {
DEBUG2("%02x ", resp.lower.unk[i]);
}
DEBUG2("\n");
DEBUG("Upper Deck:\n");
for (i = 0 ; i < sizeof(resp.upper.unk) ; i++) {
DEBUG2("%02x ", resp.upper.unk[i]);
}
DEBUG2("\n");
}
if (resp.upper.unk[0] & 0x80) { /* Not present */
INFO("Prints remaining: %d\n",
(resp.lower.unk[22] << 8) | resp.lower.unk[23]);
} else {
INFO("Prints remaining: Lower: %d Upper: %d\n",
(resp.lower.unk[22] << 8) | resp.lower.unk[23],
(resp.upper.unk[22] << 8) | resp.upper.unk[23]);
}
return 0;
}
static void mitsu70x_cmdline(void)
{
DEBUG("\t\t[ -s ] # Query status\n");
}
static int mitsu70x_cmdline_arg(void *vctx, int argc, char **argv)
{
struct mitsu70x_ctx *ctx = vctx;
int i, j = 0;
/* Reset arg parsing */
optind = 1;
opterr = 0;
while ((i = getopt(argc, argv, "s")) >= 0) {
switch(i) {
case 's':
if (ctx) {
j = mitsu70x_get_status(ctx);
break;
}
return 1;
default:
break; /* Ignore completely */
}
if (j) return j;
}
return 0;
}
/* Exported */
struct dyesub_backend mitsu70x_backend = {
.name = "Mitsubishi CP-D70/D707/K60",
.version = "0.17",
.uri_prefix = "mitsu70x",
.cmdline_usage = mitsu70x_cmdline,
.cmdline_arg = mitsu70x_cmdline_arg,
.init = mitsu70x_init,
.attach = mitsu70x_attach,
.teardown = mitsu70x_teardown,
.read_parse = mitsu70x_read_parse,
.main_loop = mitsu70x_main_loop,
.devices = {
{ USB_VID_MITSU, USB_PID_MITSU_D70X, P_MITSU_D70X, ""},
{ USB_VID_MITSU, USB_PID_MITSU_K60, P_MITSU_D70X, ""},
{ 0, 0, 0, ""}
}
};
/* Mitsubish CP-D70x/CP-K60 data format
Spool file consists of two headers followed by three image planes
and an optional lamination data plane. All blocks are rounded up to
a 512-byte boundary.
All multi-byte numbers are big endian, ie MSB first.
Header 1: (Init)
1b 45 57 55 00 00 00 00 00 00 00 00 00 00 00 00
(padded by NULLs to a 512-byte boundary)
[[ D70x ]] Header 2: (Header)
1b 5a 54 01 00 00 00 00 00 00 00 00 00 00 00 00
XX XX YY YY QQ QQ ZZ ZZ SS 00 00 00 00 00 00 00
UU 00 00 00 00 00 00 00 00 TT 00 00 00 00 00 00
RR 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
(padded by NULLs to a 512-byte boundary)
XX XX == columns
YY YY == rows
QQ QQ == lamination columns (equal to XX XX)
ZZ ZZ == lamination rows (YY YY + 12)
SS == Print mode: 00 = Fine, 03 = SuperFine, 04 = UltraFine
(Matte requires Superfine or Ultrafine)
UU == 00 == Auto, 01 == Lower Deck, 02 == Upper Deck
TT == 00 with no lamination, 02 with.
RR == 00 (normal), 01 == (Double-cut 4x6), 05 == (double-cut 2x6)
[[ K60 ]] Header 2: (Header)
1b 5a 54 00 00 00 00 00 00 00 00 00 00 00 00 00
XX XX YY YY QQ QQ ZZ ZZ SS 00 00 00 00 00 00 00
UU 00 00 00 00 00 00 00 00 TT 00 00 00 00 00 00
RR 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
(padded by NULLs to a 512-byte boundary)
XX XX == columns
YY YY == rows
QQ QQ == lamination columns (equal to XX XX)
ZZ ZZ == lamination rows (usually YY YY + 12)
SS == Print mode: 00 = Fine, 04 = UltraFine
(Matte requires Ultrafine)
UU == 01 (Lower Deck)
TT == 00 with no lamination, 02 with.
RR == 00 (normal), 01 == (Double-cut 4x6), 05 == (double-cut 2x6)
Data planes:
16-bit data, rounded up to 512-byte block (XX * YY * 2 bytes)
Lamination plane: (only present if QQ + ZZ are nonzero)
16-byte data, rounded up to 512-byte block (QQ * ZZ * 2 bytes)
Lamination appears to be these bytes, repeated: 28 6a ab 58 6c 22
********************************************************************
Command format: (D707)
-> 1b 56 32 30
<- [256 byte payload]
CP-D707DW:
e4 56 32 30 00 00 00 00 00 00 00 00 00 00 00 00 .V20............
00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 00 ................
44 80 00 00 5f 00 00 3d 43 00 50 00 44 00 37 00 D..._..=C.P.D.7.
30 00 44 00 30 00 30 00 31 00 31 00 31 00 37 00 0.D.0.0.1.1.1.7.
33 31 36 54 31 33 21 a3 33 31 35 42 31 32 f5 e5 316T13!.315B12..
33 31 39 42 31 31 a3 fb 33 31 38 45 31 32 50 0d 319B11..318E12P.
33 31 37 41 32 32 a3 82 44 55 4d 4d 59 40 00 00 317A22..DUMMY@..
44 55 4d 4d 59 40 00 00 00 00 00 00 00 00 00 00 DUMMY@..........
LOWER DECK
00 00 00 00 00 00 02 04 3f 00 00 04 96 00 00 00
ff 0f 01 00 00 c8 NN NN 00 00 00 00 05 28 75 80 NN NN: prints remaining
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
UPPER DECK
00 00 00 00 00 00 01 ee 3d 00 00 06 39 00 00 00
ff 02 00 00 01 90 NN NN 00 00 00 00 06 67 78 00 NN NN: prints remaining
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
CP-K60DW-S:
e4 56 32 30 0f 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 0a 80 00 00 00 00
02 00 00 00 5e 00 04 87 43 00 50 00 4b 00 36 00
30 00 44 00 30 00 32 00 33 00 32 00 30 00 36 00
33 31 36 4b 33 31 d6 7a 33 31 35 41 33 31 ae 37
33 31 39 41 37 31 6a 36 33 31 38 44 33 31 1e 4a
33 31 37 42 32 31 f4 19 44 55 4d 4d 59 40 00 00
44 55 4d 4d 59 40 00 00 00 00 00 00 00 00 00 00
LOWER DECK (K60)
00 00 00 00 00 00 02 09 3f 00 00 00 05 00 00 01
61 8f 00 00 01 40 NN NN 00 00 00 00 00 16 81 80 NN NN: prints remaining
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
UPPER DECK (K60 -- No upper deck present)
80 00 00 00 00 00 00 ff ff 00 00 00 00 00 00 00
ff ff ff ff ff ff ff ff ff ff 00 00 00 00 80 00
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
80 00 80 00 80 00 80 00 80 00 80 00 80 00 80 00
-> 1b 56 31 30 00 00
<- [26 byte payload]
CP-D707DW:
e4 56 31 30 00 00 00 XX YY ZZ 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00
XX/YY/ZZ are unkown. Observed values:
00 00 00
40 80 a0
80 80 a0
CP-K60DW-S: (only one readback observed so far)
e4 56 31 30 00 00 00 00 00 00 00 00 0f 00 00 00
00 00 00 00 80 00 00 00 00 00
** ** ** ** ** **
The windows drivers seem to send the id and status queries before
and in between each of the chunks sent to the printer. There doesn't
appear to be any particular intelligence in the protocol, but it didn't
work when the raw dump was submitted as-is.
*/